
Single Library Version of SPRNGMike Zhou and Mihael MasagniJune 6, 19991 SPRNG Software Struture1.1 Appliation Programming Interfae (API)The API has several interfaes in order to meet the various needs of users. Forboth languages C and Fortran, SPRNG has simple, standard, and pointerheking interfaes. It also needs to support MPI. These are aomplished byheader �les and wrapper �les. A user needs not to know the details of theheader �le and wrapper �les. However, he must have a lear piture of the frontinterfae in order to de�ne the right maros, inlude the right header �les andall the right funtions.First, if the user is programming in MPI, he needs to de�ne the maroUSE_MPI before inluding a SPRNG header �le. Message passing of MPI isused by SPRNG only in two ases:1. when the same seed is required on all the proesses in a all to make_sprng_seed,this funtion broadasts a single seed to all the proesses and2. during initialization with the simple interfae, SPRNG needs to determinethe total number of proesses and the rank of the loal proess.Then the user has three sub-interfaes to hoose: simple, standard, andpointer heking. The simple interfae is invoked by de�ning the maroSIMPLE_SPRNG. We know that SPRNG an provide a lot of random numberstreams. In fat, in standard interfae (non-simple), user an initialize dif-ferent streams and get random numbers from them by providing stream IDs.However, if you hoose the simple interfae, you have only one stream. Theadvantage of this interfae is simpliity. You don't need to all the initializationroutine and you don't need to provide the stream ID to get the next randomnumber. The third interfae is pointer heking whih is invoked by de�ningthe maro CHECK_POINTERS. It is similar to the default standard interfae, ex-ept that it heks for the validity of the stream ID eah time a SPRNG funtionis alled. This faility slows down the SPRNG routines, and so would normallybe used only while debugging the program.1

Eah sub-interfae has a set of funtions. Before using the funtions, a userneeds to inlude a header �le whih ontains the funtion delarations. C pro-grammers must inlude the �le sprng.h, whih in turn inludes interfae.h.A Fortran user needs sprng_f.h. A maro alled SPRNG_POINTER is de�nedin sprng_f.h for the stream ID. The SPRNG initialization routine returns aunique stream ID for eah stream, based on whih the di�erent streams an bedistinguished. In the implementation, an ID is atually a pointer to the mem-ory loation where the state of the stream is stored. Standard FORTRAN 77 doesnot have a pointer type. The job is done by SPRNG_POINTER. The FORTRANprogrammer an use the type SPRNG_POINTER just as if it were a FORTRANdata type. All interfaes have the same set of funtion names:� init_sprng� sprng� isprng� print_sprng� make_sprng_seed� pak_sprng� unpak_sprng� free_sprng� spawn_sprngThe di�erenes between Fortran and C interfaes funtions are data type names,like integer vs int, SPRNG_POINTER vs int *. The di�erene between thethe funtion set of simple interfae and that of the standard and pointerheking interfaes is that the simple interfae funtions don't have the streamID related arguments.Typially a user alls (we use standard interfae as an example and provideboth C and Fortran versions)int *init_sprng(int streamnum, int nstreams, int seed, int param)SPRNG_POINTER init_sprng(integer streamnum, integer nstreams, integer seed, integer param)to initialize a random number stream. This all returns the ID of the stream.The user an then useint isprng(int *stream)real*8 sprng(SPRNG_POINTER stream)to get the next random integer in [0; 231), or2

double sprng(int *stream)real*8 sprng(SPRNG_POINTER stream)to get the next random number of double preision in [0; 1). When the userdoesn't need the stream anymore, the stream an be deleted viaint free_sprng(int *stream)integer free_sprng(SPRNG_POINTER stream)The other funtions are auxiliary. print_sprng prints information about streamsafter initialization or spawning. make_sprng_seed produes a new seed usingsystem date and time information. pak_sprng paks the state of the streamwith ID stream into an array. unpak_sprng does the opposite. They an beused to pass a stream between proesses. spawn_sprng reates new randomnumber streams when given a stream ID stream.1.2 Bak-End ImplementationThe API is the front end of SPRNG. In the previous bak end implementation,a library is reated for eah generator. Currently there are six generators imple-mented: Modi�ed Additive Lagged Fibonai, Multipliative LaggedFibonai, Combined Multiple Reursive generator, and three types ofLinear Congruential. Users need to link their programs with one of the gen-erator libraries at ompile time. Di�erent libraries implement the same set offuntion alls:� init_rng� get_rn_int� get_rn_flt� get_rn_dbl� spawn_rng� get_seed_rng� free_rng� pak_rng� unpak_rng� print_rng
3

Most of the front end funtion alls for di�erent interfaes, C, Fortran, simple,standard, and pointer heking, all end up to be alls to this set of funtionsthrough the header �les and wrapper �les. These �les an be grouped aordingto the interfaes they serve for. One an see the modularity of the SPRNGsoftware. The interfae �les are in a module and �les of eah generator arein separate modules. When you add or hange a generator, you don't need toworry about the interfaes �les and other generators. You only need to makesure that you orretly implemented the required set of funtions.The following are for the MPI interfae:ommuniate.simple_mpi.fwrap_mpi.These �les have funtions using MPI libraries for ommuniation among proes-sors. The funtions will be alled when the MPI interfae is hosen.The header �le sprng.h is for C interfae. For Fortran interfae, we havethe following header and wrapper �les:sprng_f.hfwrap.hfwrap_.hfwrap_mpi.We know that the generator funtions are implemented in C and these C funtionsan not be alled diretly from a Fortran program sine Fortran funtionalls use all-by-referene onvention and C funtion alls use all-by-valueonvention. The wrapper funtions in these �les are the C equivalents of theFortran funtions so they an be alled from Fortran programs. The wrapperfuntions then all the generator C funtions.The �les simple_.h and simple_mpi. are for the simple interfae. The�le hekid. is for the pointer heking interfae. Eah generator has aseparate diretory whih ontains �les implementing the same set of funtions.The funtions are delared in the header �le interfae.h.2 The New SPRNGUsing the previous version of SPRNG, a user an use only one of the SPRNGgenerators in one run of the program. The objetive of the new version is toombine the urrent random number generators (RNGs) into a single library sothat a user an use all of them in a single program at the same time.4

2.1 Changes to the User Interfae (API)The user now is able to and needs to speify the type of RNG when a randomnumber stream is initialized. We add one integer argument rng_type to thefront of the argument list of the funtion init_sprng,int *init_sprng(intrng_type, int stream_number, int nstreams, int seed, int rng_parameter)SPRNG_POINTER init_sprng(integerrng_type, integer streamnum, integer nstreams, integer seed, integer param)User an speify one of the follows for rng_type:� SPRNG_LFG� SPRNG_LCG� SPRNG_LCG64� SPRNG_CMRG� SPRNG_MLFG� SPRNG_PMLCGThe following maros are added to sprng.h and sprng_f.h:#define SPRNG_LFG 0#define SPRNG_LCG 1#define SPRNG_LCG64 2#define SPRNG_CMRG 3#define SPRNG_MLFG 4#define SPRNG_PMLCG 5For simple interfae, a user an only have one random number stream at onetime sine he doesn't speify stream ID. The default generator is "SPRNG_LFG".User still an hange random number type at runtime by allinginit_sprng: int *init_sprng(int rng_type, int seed, int rng_parameter)SPRNG_POINTER init_sprng(integer rng_type, integer seed, integer param)The above are all the hanges a user needs to know. Behind the senes, a lot ofhanges are inurred to interfae related and generator related �les.
5

2.2 Changes to Interfae Implementation FilesIn the C interfae header �le, sprng.h and interfae.h, the following modi�-ations are needed beause of the addition of the rng_type argument,init_sprng(A,B,C,D) --> init_sprng(A,B,C,D,E)init_rng(A,B,C,D) --> init_rng(A,B,C,D,E)init_rng ANSI_ARGS((int gennum, ... -->init_rng ANSI_ARGS((int rng_type, int gennum, ...In the Fortran wrapper �les, fwrap_.h and fwrap_mpi., do initialization re-lated modi�ations like,FNAMEOF_finit_rng(int *gennum, ... -->FNAMEOF_finit_rng(int *rng_type, int *gennum,init_rng(*gennum, ... --> init_rng(*rng_type, *gennum, ...Note that this is not a omplete list. Anywhere ontaining the key string �init�should be heked.For the simple interfae to work, we de�ne a maro alled �DEFAULT_RNG_TYPE�in interfae.h,#define DEFAULT_RNG_TYPE SPRNG_LFGThen we add an argument DEFAULT_RNG_TYPE for funtion "init_rng" in �lessimple_.h and simple_mpi.,init_rng(DEFAULT_RNG_TYPE, ...2.3 The Bak-EndNow we need to ombine the separate generator libraries into a single library.To keep the modularity, we didn't ombine the di�erent generator funtionsinto single funtions. In stead, we keep them in original �les and diretories.The RNGs de�ne the same set of funtion prototypes with whih the variousinterfae funtion alls end up. Inluding them in a same library will ausename on�its. To distinguish funtions for di�erent RNG, we expand the namespae by pre�xing eah funtion with the name of the generator, for example,we hange init_rng to lg_init_rng for generator LCG. This way, they ano-exist in one library.
6

Simple

Standard

Pointer Checking

C

Fortran

MPI

init_sprng
sprng
isprng
print_sprng
make_sprng_seed
pack_sprng
unpack_sprng
free_sprng
spawn_sprng

init_rng
get_rn_int
get_rn_dbl
get_rn_flt
spawn_rng
get_seed_rng
free_rng
pack_rng
unpack_rng
print_rng

lcg_init_rng
lcg_get_rn_int
...

lcg_init_rng
lcg_get_rn_int
...

Dynamic
Function

Table
Lookup

lcg64_init_rng
lcg64_get_rn_int
......

cmrg_init_rng
cmrg_get_rn_int
......

mlfg_init_rng
mlfg_get_rn_int
......

......

lfg_init_rng
lfg_get_rn_int
lfg_get_rn_dbl
lfg_get_rn_flt
...

pmlcg_init_rng
pmlcg_get_rn_int

RNG Functions

RNG
Wrapper
Functions

(in sprng.c)Interfaces
(interface header and wrapper files)

User
API

Functions

Figure1:SinglelibrarySPRNGstruture
7

The Wrapper File and the Dynami Funtion Table LookupWe then write wrapper funtions with the original funtion names. The userinterfae funtions all the wrapper funtions while these wrapper funtions allthe right RNG funtions aording to the random number type. The wholepiture is shown in Fig.(1).Here are the details of the hange. First we reate a subdiretory sprngwhih is in parallel to the generator diretory like lg. In this diretory wereate the wrapper �le "sprng." (see Appendix A).In the ode we �rst reate global arrays of funtion pointers. The elementsof the arrays are pointers pointing to orresponding real RNG funtions. Theindies to the array are generator types. This dynami table lookup approahis more e�ient than using �swith� or �if ... else...� statements. Thelatter will involve some omparisons. The maximum number of omparisons isequal to the number of generators. In the funtion table approah, there is noomparison at all. Sine the funtions will be alled over and over, this willmake a di�erene.Retrieve of RNG type in the Wrapper FuntionsA random number stream's state information is stored in a struture alled�strut rngen�. It is natural for us to add the random number type rng_typeto this struture. When the initialization funtion �init_rng� is alled, therandom number type is stored in �strut rngen�.Subsequent alls for next random number will only provide the stream ID,whih is the address of �strut rngen�. The wrapper funtion needs to get theRNG type from the stream struture. This ould be a problem sine RNGs havedi�erent de�nitions for "strut rngen". We solved the problem by foring the�rst �eld of eah "strut rngen" be the integer rng_type. In the wrapper �lewe ast the stream ID to a struture with one and only one �eld rng_type. Wethen aess the �rst �eld through struture member dereferene. This way weget the random number type without knowing all the details of the strutures.The unpak_rng funtion is di�erent from the others in that here we aregiven a paked RNG state pakage instead of the rngen strut itself. To getthe rng_type we need to unpak the pakage but to unpak the pakage weneed to know the rng_type to apply the right routine. To solve this hiken-eggproblem we again fore eah RNG to pak rng_type �rst and in the same wayso that we an partially unpak the pakage and get the rng_type in an RNGindependent manner.Changes to Generator Implementation DiretoriesEah random number generator diretory, lfg, lg, mlfg, lg64, pmlg andmrg undergoes some hanges. As mentioned above, we hanged the funtionnames by pre�xing them with the generator name. We also need to store therandom number type in the state struture. In the following we use �lg� as anexample. 8

We need a new header �le �lg.h� for the prototype delarations of thefuntions with new names. �lg.h� should be inluded in sprng..For �lg.�, we pre�x eah funtion name with "lg_" by using the followingpreproessor diretives:#define init_rng lg_init_rng#define get_rn_int lg_get_rn_int#define get_rn_flt lg_get_rn_flt#define get_rn_dbl lg_get_rn_dbl#define spawn_rng lg_spawn_rng#define get_seed_rng lg_get_seed_rng#define free_rng lg_free_rng#define pak_rng lg_pak_rng#define unpak_rng lg_unpak_rng#define print_rng lg_print_rngGlobal variable names also need to be pre�xed to avoid on�its. For all gener-ators, we apply#define MAX_STREAMS lg_MAX_STREAMS#define NGENS lg_NGENSFor lfg and mlfg, the name valid needs to be taken are while for lg64 andmrg we have PARAMLIST.Another thing to take are is to store random number type information.First we modify strut rngen to inludeint rng_type;as the �rst �eld. Then we modify the funtion init_rng to initialize the �eldrng_type using the rng_type passed in as argument:genptr->rng_type = rng_type;The funtions initialize, spawn_rng, pak_rng and unpak_rng all need bemodi�ed to deal with the new �eld rng_type in the struture. This is a tediouswork sine di�erent generators were implemented in di�erent ways. You must�gure it out one by one.There are three generators that need prime number routines. Unfortunately,there are two versions of them. To avoid name on�its, we post�x the �le nameand funtion names with _32 for 32bit version and _64 for 64bit version. Wealso move them to the parent �SRC� diretory for onsisteny sine the ommondependent �les live there. Corresponding hanges are needed in the generatorsoure �les. These inlude the inlude �le name hanges and getprime funtionname hanges. 9

3 Inorporate SPRNG to CondorCondor is a software system olleting workstation CPU yles for omputationintensive programs like Monte Carlo appliations. Monte Carlo appliations isnot only a big CPU time onsumer but also a big random number onsumer.The Condor people want to inlude SPRNG as an integrate part of Condor sothat a Condor job an be linked with SPRNG random number library easily.We desribe here the tehnial details of this �marriage�.In the following we assume the Condor release diretory name is �ondor�and the SPRNG root diretory name is �sprng�.1. Create diretory, ondor/inlude, and opy "interfae.h", "sprng.h"and "sprng_f.h" from sprng/inlude to it.2. Copy "libsprng.a" from sprng/lib to ondor/lib.3. Modify "ondor/bin/ondor_ompile". Under "CONDOR_LIBDIR= ..",add SPRNG_INCLUDEDIR=$CONDOR_LIBDIR/../inlude .4. Change all "$*" to "$* -I$SPRNG_INCLUDEDIR -L$CONDOR_LIBDIR -lsprng -lgmp"User doesn't need to speify SPRNG library to link on ommand line, e.g.ondor_ompile foo.

10

Appendix A: RNG wrapper �le sprng./***//* SPRNG single library version *//* sprng., Wrapper file for rngs *//* *//* Author: Mike H. Zhou, *//* University of Southern Mississippi *//* E-Mail: Mike.Zhou�usm.edu *//* Date: April, 1999 *//* *//* Dislaimer: We expressly dislaim any and all warranties, expressed *//* or implied, onerning the enlosed software. The intent in sharing *//* this software is to promote the produtive interhange of ideas *//* throughout the researh ommunity. All software is furnished on an *//* "as is" basis. No further updates to this software should be *//* expeted. Although this may our, no ommitment exists. The authors *//* ertainly invite your omments as well as the reporting of any bugs. *//* We annot ommit that any or all bugs will be fixed. *//***/#inlude <stdio.h>#inlude <string.h>#inlude <stdlib.h>#inlude "memory.h"#inlude "sprng.h"#inlude "interfae.h"#inlude "lfg/lfg.h"#inlude "lg/lg.h"#inlude "lg64/lg64.h"#inlude "mrg/mrg.h"#inlude "mlfg/mlfg.h"#inlude "pmlg/pmlg.h"#define NDEBUG#inlude <assert.h>#define VERSION "00"#define GENTYPE VERSION "SPRNG Wrapper"/** This strut is used to retrieve "rng_type" from the rng speifi* "strut rngen". RNGs have different definations for "strut rngen",* however, its first field must be the integer "rng_type"*/strut rngen{ int rng_type;};/** The funtion tables, the order of the RNG funtions in eah table* must onform to that of the maro definations in sprng.h and* sprng_f.h,* #define SPRNG_LFG 0* #define SPRNG_LCG 1* #define SPRNG_LCG64 2 11

* #define SPRNG_CMRG 3* #define SPRNG_MLFG 4* #define SPRNG_PMLCG 5*/int *(*init_rng_tbl[℄)(int rng_type,int gennum,int total_gen,int seed,int mult)\= { lfg_init_rng, \lg_init_rng, \lg64_init_rng, \mrg_init_rng,\mlfg_init_rng, \pmlg_init_rng};double (*get_rn_dbl_tbl[℄)(int *igenptr)\={ lfg_get_rn_dbl, \lg_get_rn_dbl, \lg64_get_rn_dbl, \mrg_get_rn_dbl,\mlfg_get_rn_dbl, \pmlg_get_rn_dbl};int (*get_rn_int_tbl[℄)(int *igenptr)\={ lfg_get_rn_int, \lg_get_rn_int, \lg64_get_rn_int, \mrg_get_rn_int,\mlfg_get_rn_int, \pmlg_get_rn_int};float (*get_rn_flt_tbl[℄)(int *igenptr)\={ lfg_get_rn_flt, \lg_get_rn_flt, \lg64_get_rn_flt, \mrg_get_rn_flt,\mlfg_get_rn_flt, \pmlg_get_rn_flt};int (*spawn_rng_tbl[℄)(int *igenptr, int nspawned, int ***newgens, int hekid)\={ lfg_spawn_rng, \lg_spawn_rng, \lg64_spawn_rng, \mrg_spawn_rng,\mlfg_spawn_rng, \pmlg_spawn_rng};int (*free_rng_tbl[℄)(int *genptr)\={ lfg_free_rng, \lg_free_rng, \lg64_free_rng, \mrg_free_rng,\mlfg_free_rng, \pmlg_free_rng};int (*pak_rng_tbl[℄)(int *genptr, har **buffer)\={ lfg_pak_rng, \lg_pak_rng, \lg64_pak_rng, \ 12

mrg_pak_rng,\mlfg_pak_rng, \pmlg_pak_rng};int *(*unpak_rng_tbl[℄)(har *paked)\={ lfg_unpak_rng, \lg_unpak_rng, \lg64_unpak_rng, \mrg_unpak_rng,\mlfg_unpak_rng, \pmlg_unpak_rng};int (*get_seed_rng_tbl[℄)(int *gen)\={ lfg_get_seed_rng, \lg_get_seed_rng, \lg64_get_seed_rng, \mrg_get_seed_rng,\mlfg_get_seed_rng, \pmlg_get_seed_rng};int (*print_rng_tbl[℄)(int *igen)\={ lfg_print_rng, \lg_print_rng, \lg64_print_rng, \mrg_print_rng,\mlfg_print_rng, \pmlg_print_rng};#ifdef __STDC__int *init_rng(int rng_type, int gennum, int total_gen, int seed, int mult)#elseint *init_rng(rng_type,gennum,total_gen,seed,mult)int rng_type,gennum,mult,seed,total_gen;#endif{ if (rng_type==SPRNG_LFG || \rng_type==SPRNG_LCG || \rng_type==SPRNG_LCG64 ||\rng_type==SPRNG_CMRG || \rng_type==SPRNG_MLFG || \rng_type==SPRNG_PMLCG){ return init_rng_tbl[rng_type℄(rng_type,gennum,total_gen,seed,mult);}else{fprintf(stderr, "Error: in init_rng, invalid generator type.\n");return NULL;}}#ifdef __STDC__int get_rn_int(int *igenptr)#elseint get_rn_int(igenptr)int *igenptr; 13

#endif{ strut rngen * tmpgen = (strut rngen *)igenptr;return get_rn_int_tbl[tmpgen->rng_type℄(igenptr);}#ifdef __STDC__float get_rn_flt(int *igenptr)#elsefloat get_rn_flt(igenptr)int *igenptr;#endif{ return get_rn_flt_tbl[((strut rngen *)igenptr)->rng_type℄(igenptr);} /* get_rn_float */#ifdef __STDC__double get_rn_dbl(int *igenptr)#elsedouble get_rn_dbl(igenptr)int *igenptr;#endif{ return get_rn_dbl_tbl[((strut rngen *)igenptr)->rng_type℄(igenptr);} /* get_rn_dbl */#ifdef __STDC__int spawn_rng(int *igenptr, int nspawned, int ***newgens, int hekid)#elseint spawn_rng(igenptr,nspawned, newgens, hekid)int *igenptr,nspawned, ***newgens, hekid;#endif{ return spawn_rng_tbl[((strut rngen *)igenptr)->rng_type℄\(igenptr,nspawned,newgens,hekid);}#ifdef __STDC__int free_rng(int *genptr)#elseint free_rng(genptr)int *genptr;#endif{ return free_rng_tbl[((strut rngen *)genptr)->rng_type℄(genptr);}#ifdef __STDC__int pak_rng(int *genptr, har **buffer)#elseint pak_rng(genptr,buffer) 14

int *genptr;har **buffer;#endif{ return pak_rng_tbl[((strut rngen *)genptr)->rng_type℄(genptr,buffer);}#ifdef __STDC__int get_seed_rng(int *gen)#elseint get_seed_rng(gen)int *gen;#endif{ return get_seed_rng_tbl[((strut rngen *)gen)->rng_type℄(gen);}#ifdef __STDC__int *unpak_rng(har *paked)#elseint *unpak_rng(paked)har *paked;#endif{ int rng_type;load_int(paked,4,(unsigned int *)&rng_type);/*return unpak_rng_tbl[((strut rngen *)paked)->rng_type℄(paked);*/return unpak_rng_tbl[rng_type℄(paked);}#ifdef __STDC__int print_rng(int *igen)#elseint print_rng(igen)int *igen;#endif{ return print_rng_tbl[((strut rngen *)igen)->rng_type℄(igen);}#inlude "../simple_.h"#inlude "../fwrap_.h"
15

