tshark - Dump and analyze network traffic
tshark [ -a <capture autostop condition> ] ... [ -b <capture ring buffer option>] ... [ -B <capture buffer size (Win32 only)> ] [ -c <capture packet count> ] [ -C <configuration profile> ] [ -d <layer type>==<selector>,<decode-as protocol> ] [ -D ] [ -e <field> ] [ -E <field print option> ] [ -f <capture filter> ] [ -F <file format> ] [ -h ] [ -i <capture interface>|- ] [ -K <keytab> ] [ -l ] [ -L ] [ -n ] [ -N <name resolving flags> ] [ -o <preference setting> ] ... [ -p ] [ -q ] [ -r <infile> ] [ -R <read (display) filter> ] [ -s <capture snaplen> ] [ -S ] [ -t ad|a|r|d|e ] [ -T pdml|psml|ps|text|fields ] [ -v ] [ -V ] [ -w <outfile>|- ] [ -x ] [ -X <eXtension option>] [ -y <capture link type> ] [ -z <statistics> ] [ <capture filter> ]
TShark is a network protocol analyzer. It lets you capture packet data from a live network, or read packets from a previously saved capture file, either printing a decoded form of those packets to the standard output or writing the packets to a file. TShark's native capture file format is libpcap format, which is also the format used by tcpdump and various other tools.
Without any options set, TShark will work much like tcpdump. It will use the pcap library to capture traffic from the first available network interface and displays a summary line on stdout for each received packet.
TShark is able to detect, read and write the same capture files that
are supported by Wireshark.
The input file doesn't need a specific filename extension; the file
format and an optional gzip compression will be automatically detected.
Near the beginning of the DESCRIPTION section of wireshark(1)
or
http://www.wireshark.org/docs/man-pages/wireshark.html
is a detailed description of the way Wireshark handles this, which is
the same way Tshark handles this.
Compressed file support uses (and therefore requires) the zlib library. If the zlib library is not present, TShark will compile, but will be unable to read compressed files.
If the -w option is not specified, TShark writes to the standard output the text of a decoded form of the packets it captures or reads. If the -w option is specified, TShark writes to the file specified by that option the raw data of the packets, along with the packets' time stamps.
When writing a decoded form of packets, TShark writes, by default, a summary line containing the fields specified by the preferences file (which are also the fields displayed in the packet list pane in Wireshark), although if it's writing packets as it captures them, rather than writting packets from a saved capture file, it won't show the ``frame number'' field. If the -V option is specified, it writes instead a view of the details of the packet, showing all the fields of all protocols in the packet.
If you want to write the decoded form of packets to a file, run TShark without the -w option, and redirect its standard output to the file (do not use the -w option).
When writing packets to a file, TShark, by default, writes the file in libpcap format, and writes all of the packets it sees to the output file. The -F option can be used to specify the format in which to write the file. This list of available file formats is displayed by the -F flag without a value. However, you can't specify a file format for a live capture.
Read filters in TShark, which allow you to select which packets are to be decoded or written to a file, are very powerful; more fields are filterable in TShark than in other protocol analyzers, and the syntax you can use to create your filters is richer. As TShark progresses, expect more and more protocol fields to be allowed in read filters.
Packet capturing is performed with the pcap library. The capture filter syntax follows the rules of the pcap library. This syntax is different from the read filter syntax. A read filter can also be specified when capturing, and only packets that pass the read filter will be displayed or saved to the output file; note, however, that capture filters are much more efficient than read filters, and it may be more difficult for TShark to keep up with a busy network if a read filter is specified for a live capture.
A capture or read filter can either be specified with the -f or -R option, respectively, in which case the entire filter expression must be specified as a single argument (which means that if it contains spaces, it must be quoted), or can be specified with command-line arguments after the option arguments, in which case all the arguments after the filter arguments are treated as a filter expression. Capture filters are supported only when doing a live capture; read filters are supported when doing a live capture and when reading a capture file, but require TShark to do more work when filtering, so you might be more likely to lose packets under heavy load if you're using a read filter. If the filter is specified with command-line arguments after the option arguments, it's a capture filter if a capture is being done (i.e., if no -r option was specified) and a read filter if a capture file is being read (i.e., if a -r option was specified).
duration:value Stop writing to a capture file after value seconds have elapsed.
filesize:value Stop writing to a capture file after it reaches a size of value kilobytes (where a kilobyte is 1024 bytes). If this option is used together with the -b option, TShark will stop writing to the current capture file and switch to the next one if filesize is reached. When reading a capture file, TShark will stop reading the file after the number of bytes read exceeds this number (the complete packet will be read, so more bytes than this number may be read).
files:value Stop writing to capture files after value number of files were written.
The created filenames are based on the filename given with the -w option, the number of the file and on the creation date and time, e.g. outfile_00001_20050604120117.pcap, outfile_00001_20050604120523.pcap, ...
With the files option it's also possible to form a ``ring buffer''. This will fill up new files until the number of files specified, at which point TShark will discard the data in the first file and start writing to that file and so on. If the files option is not set, new files filled up until one of the capture stop conditions match (or until the disk if full).
The criterion is of the form key:value, where key is one of:
duration:value switch to the next file after value seconds have elapsed, even if the current file is not completely filled up.
filesize:value switch to the next file after it reaches a size of value kilobytes (where a kilobyte is 1024 bytes).
files:value begin again with the first file after value number of files were written (form a ring buffer).
Example: -d tcp.port==8888,http will decode any traffic running over TCP port 8888 as HTTP.
Using an invalid selector or protocol will print out a list of valid selectors and protocol names, respectively.
Example: -d . is a quick way to get a list of valid selectors.
Example: -d ethertype==0x0800. is a quick way to get a list of protocols that can be selected with an ethertype.
This can be useful on systems that don't have a command to list them (e.g., Windows systems, or UNIX systems lacking ifconfig -a); the number can be useful on Windows 2000 and later systems, where the interface name is a somewhat complex string.
Note that ``can capture'' means that TShark was able to open that device to do a live capture. Depending on your system you may need to run tshark from an account with special privileges (for example, as root) to be able to capture network traffic. If TShark -D is not run from such an account, it will not list any interfaces.
Example: -e frame.number -e ip.addr -e udp
Giving a protocol rather than a single field will print multiple items of data about the protocol as a single field. Fields are separated by tab characters by default. -E controls the format of the printed fields.
Options are:
header=y|n If y, print a list of the field names given using -e as the first line of the output; the field name will be separated using the same character as the field values. Defaults to n.
separator=/t|/s|<character> Set the separator character to use for fields. If /t tab will be used (this is the default), if /s, s single space will be used. Otherwise any character that can be accepted by the command line as part of the option may be used.
quote=d|s|n Set the quote character to use to surround fields. d uses double-quotes, s single-quotes, n no quotes (the default).
Network interface names should match one of the names listed in ``tshark -D'' (described above); a number, as reported by ``tshark -D'', can also be used. If you're using UNIX, ``netstat -i'' or ``ifconfig -a'' might also work to list interface names, although not all versions of UNIX support the -a option to ifconfig.
If no interface is specified, TShark searches the list of interfaces, choosing the first non-loopback interface if there are any non-loopback interfaces, and choosing the first loopback interface if there are no non-loopback interfaces. If there are no interfaces at all, TShark reports an error and doesn't start the capture.
Pipe names should be either the name of a FIFO (named pipe) or ``-'' to read data from the standard input. Data read from pipes must be in standard libpcap format.
Note: the Win32 version of TShark doesn't support capturing from pipes!
Example: -K krb5.keytab
This may be useful when piping the output of TShark to another program, as it means that the program to which the output is piped will see the dissected data for a packet as soon as TShark sees the packet and generates that output, rather than seeing it only when the standard output buffer containing that data fills up.
The argument is a string that may contain the letters:
m to enable MAC address resolution
n to enable network address resolution
t to enable transport-layer port number resolution
C to enable concurrent (asynchronous) DNS lookups
When reading a capture file, or when capturing and not saving to a file, don't print packet information; this is useful if you're using a -z option to calculate statistics and don't want the packet information printed, just the statistics.
ad absolute with date: The absolute date and time is the actual time and date the packet was captured
a absolute: The absolute time is the actual time the packet was captured, with no date displayed
r relative: The relative time is the time elapsed between the first packet and the current packet
d delta: The delta time is the time since the previous packet was captured
e epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)
pdml Packet Details Markup Language, an XML-based format for the details of a decoded packet. This information is equivalent to the packet details printed with the -V flag.
psml Packet Summary Markup Language, an XML-based format for the summary information of a decoded packet. This information is equivalent to the information shown in the one-line summary printed by default.
ps PostScript for a human-readable one-line summary of each of the packets, or a multi-line view of the details of each of the packets, depending on whether the -V flag was specified.
text Text of a human-readable one-line summary of each of the packets, or a multi-line view of the details of each of the packets, depending on whether the -V flag was specified. This is the default.
fields The values of fields specified with the -e option, in a form specified by the -E option.
NOTE: -w provides raw packet data, not text. If you want text output you need to redirect stdout (e.g. using '>'), don't use the -w option for this.
lua_script:lua_script_filename tells Wireshark to load the given script in addition to the default Lua scripts.
Note that the -z proto option is different - it doesn't cause statistics to be gathered and printed when the capture is complete, it modifies the regular packet summary output to include the values of fields specified with the option. Therefore you must not use the -q option, as that option would suppress the printing of the regular packet summary output, and must also not use the -V option, as that would cause packet detail information rather than packet summary information to be printed.
Currently implemented statistics are:
-z dcerpc,rtt,uuid,major.minor[,filter]
Collect call/reply RTT data for DCERPC interface uuid, version major.minor. Data collected is number of calls for each procedure, MinRTT, MaxRTT and AvgRTT. Example: use -z dcerpc,rtt,12345778-1234-abcd-ef00-0123456789ac,1.0 to collect data for CIFS SAMR Interface. This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z dcerpc,rtt,12345778-1234-abcd-ef00-0123456789ac,1.0,ip.addr==1.2.3.4 to collect SAMR RTT statistics for a specific host.
-z io,phs[,filter]
Create Protocol Hierarchy Statistics listing both number of packets and bytes. If no filter is specified the statistics will be calculated for all packets. If a filters is specified statistics will be only calculated for those packets that match the filter.
This option can be used multiple times on the command line.
-z io,stat,interval[,filter][,filter][,filter]...
Collect packet/bytes statistics for the capture in intervals of interval seconds. Intervals can be specified either as whole or fractional seconds. Interval can be specified in ms resolution.
If no filter is specified the statistics will be calculated for all packets. If one or more filters are specified statistics will be calculated for all filters and presented with one column of statistics for each filter.
This option can be used multiple times on the command line.
Example: -z io,stat,1,ip.addr==1.2.3.4 to generate 1 second statistics for all traffic to/from host 1.2.3.4.
Example: -z ``io,stat,0.001,smb&&ip.addr==1.2.3.4'' to generate 1ms statistics for all SMB packets to/from host 1.2.3.4.
The examples above all use the standard syntax for generating statistics which only calculates the number of packets and bytes in each interval.
io,stat can also do much more statistics and calculate COUNT(), SUM(),
MIN(), MAX(), and AVG()
using a slightly different filter syntax:
[COUNT|SUM|MIN|MAX|AVG](<field>)<filter>
One important thing to note here is that the field that the calculation is based on MUST also be part of the filter string or else the calculation will fail.
So: -z io,stat,0.010,AVG(smb.time) does not work. Use -z io,stat,0.010,AVG(smb.time)smb.time instead. Also be aware that a field can exist multiple times inside the same packet and will then be counted multiple times in those packets.
COUNT(<field>) can be used on any type which has a display filter name. It will count how many times this particular field is encountered in the filtered packet list.
Example: -z io,stat,0.010,COUNT(smb.sid)smb.sid This will count the total number of SIDs seen in each 10ms interval.
SUM(<field>) can only be used on named fields of integer type. This will sum together every occurence of this fields value for each interval.
Example: -z io,stat,0.010,SUM(frame.pkt_len)frame.pkt_len This will report the total number of bytes seen in all the packets within an interval.
MIN/MAX/AVG(<field>) can only be used on named fields that are either integers or relative time fields. This will calculate maximum/minimum or average seen in each interval. If the field is a relative time field the output will be presented in seconds and three digits after the decimal point. The resolution for time calculations is 1ms and anything smaller will be truncated.
Example: -z ``io,stat,0.010,smb.time&&ip.addr==1.1.1.1,MIN(smb.time)smb.time&&ip.addr==1.1.1.1,MAX(smb.time)smb.time&&ip.addr==1.1.1.1,MAX(smb.time)smb.time&&ip.addr==1.1.1.1''
This will calculate statistics for all smb response times we see to/from host 1.1.1.1 in 10ms intervals. The output will be displayed in 4 columns; number of packets/bytes, minimum response time, maximum response time and average response time.
-z conv,type[,filter]
Create a table that lists all conversations that could be seen in the capture. type specifies which type of conversation we want to generate the statistics for; currently the supported ones are
"eth" Ethernet "fc" Fibre Channel "fddi" FDDI "ip" IP addresses "ipx" IPX addresses "tcp" TCP/IP socket pairs Both IPv4 and IPv6 are supported "tr" Token Ring "udp" UDP/IP socket pairs Both IPv4 and IPv6 are supported
If the optional filter string is specified, only those packets that match the filter will be used in the calculations.
The table is presented with one line for each conversation and displays number of packets/bytes in each direction as well as total number of packets/bytes. The table is sorted according to total number of bytes.
-z proto,colinfo,filter,field
Append all field values for the packet to the Info column of the one-line summary output. This feature can be used to append arbitrary fields to the Info column in addition to the normal content of that column. field is the display-filter name of a field which value should be placed in the Info column. filter is a filter string that controls for which packets the field value will be presented in the info column. field will only be presented in the Info column for the packets which match filter.
NOTE: In order for TShark to be able to extract the field value from the packet, field MUST be part of the filter string. If not, TShark will not be able to extract its value.
For a simple example to add the ``nfs.fh.hash'' field to the Info column for all packets containing the ``nfs.fh.hash'' field, use
-z proto,colinfo,nfs.fh.hash,nfs.fh.hash
To put ``nfs.fh.hash'' in the Info column but only for packets coming from host 1.2.3.4 use:
-z ``proto,colinfo,nfs.fh.hash && ip.src==1.2.3.4,nfs.fh.hash''
This option can be used multiple times on the command line.
-z rpc,rtt,program,version[,filter]
Collect call/reply RTT data for program/version. Data collected is number of calls for each procedure, MinRTT, MaxRTT and AvgRTT. Example: use -z rpc,rtt,100003,3 to collect data for NFS v3. This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z rpc,rtt,100003,3,nfs.fh.hash==0x12345678 to collect NFS v3 RTT statistics for a specific file.
-z rpc,programs
Collect call/reply RTT data for all known ONC-RPC programs/versions. Data collected is number of calls for each protocol/version, MinRTT, MaxRTT and AvgRTT. This option can only be used once on the command line.
-z rtp,streams
Collect statistics for all RTP streams and calculate max. delta, max. and mean jitter and packet loss percentages.
-z smb,rtt[,filter]
Collect call/reply RTT data for SMB. Data collected is number of calls for each SMB command, MinRTT, MaxRTT and AvgRTT. Example: use -z smb,rtt. The data will be presented as separate tables for all normal SMB commands, all Transaction2 commands and all NT Transaction commands. Only those commands that are seen in the capture will have its stats displayed. Only the first command in a xAndX command chain will be used in the calculation. So for common SessionSetupAndX + TreeConnectAndX chains, only the SessionSetupAndX call will be used in the statistics. This is a flaw that might be fixed in the future.
This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``smb,rtt,ip.addr==1.2.3.4'' to only collect stats for SMB packets echanged by the host at IP address 1.2.3.4 .
-z smb,sids
When this feature is used TShark will print a report with all the discovered SID and account name mappings. Only those SIDs where the account name is known will be presented in the table.
For this feature to work you will need to either to enable ``Edit/Preferences/Protocols/SMB/Snoop SID to name mappings'' in the preferences or you can override the preferences by specifying -o ``smb.sid_name_snooping:TRUE'' on the TShark command line.
The current methods used by TShark to find the SID->name mapping is relatively restricted but is hoped to be expanded in the future.
-z mgcp,rtd[,filter]
Collect requests/response RTD (Response Time Delay) data for MGCP. This is similar to -z smb,rtt). Data collected is number of calls for each known MGCP Type, MinRTD, MaxRTD and AvgRTD. Additionally you get the number of duplicate requests/responses, unresponded requests, responses ,which don't match with any request. Example: use -z mgcp,rtd.
This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``mgcp,rtd,ip.addr==1.2.3.4'' to only collect stats for MGCP packets exchanged by the host at IP address 1.2.3.4 .
-z megaco,rtd[,filter]
Collect requests/response RTD (Response Time Delay) data for MEGACO. This is similar to -z smb,rtt). Data collected is number of calls for each known MEGACO Type, MinRTD, MaxRTD and AvgRTD. Additionally you get the number of duplicate requests/responses, unresponded requests, responses ,which don't match with any request. Example: use -z megaco,rtd.
This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``megaco,rtd,ip.addr==1.2.3.4'' to only collect stats for MEGACO packets exchanged by the host at IP address 1.2.3.4 .
-z h225,counter[,filter]
Count ITU-T H.225 messages and their reasons. In the first column you get a list of H.225 messages and H.225 message reasons, which occur in the current capture file. The number of occurences of each message or reason is displayed in the second column.
Example: use -z h225,counter.
This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``h225,counter,ip.addr==1.2.3.4'' to only collect stats for H.225 packets exchanged by the host at IP address 1.2.3.4 .
-z h225,srt[,filter]
Collect requests/response SRT (Service Response Time) data for ITU-T H.225 RAS. Data collected is number of calls of each ITU-T H.225 RAS Message Type, Minimum SRT, Maximum SRT, Average SRT, Minimum in Frame, and Maximum in Frame. You will also get the number of Open Requests (Unresponded Requests), Discarded Responses (Responses without matching request) and Duplicate Messages. Example: use -z h225,srt.
This option can be used multiple times on the command line.
If the optional filterstring is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``h225,srt,ip.addr==1.2.3.4'' to only collect stats for ITU-T H.225 RAS packets exchanged by the host at IP address 1.2.3.4 .
-z sip,stat[,filter]
This option will activate a counter for SIP messages. You will get the number of occurences of each SIP Method and of each SIP Status-Code. Additionally you also get the number of resent SIP Messages (only for SIP over UDP).
Example: use -z sip,stat.
This option can be used multiple times on the command line.
If the optional filter string is provided, the stats will only be calculated on those calls that match that filter. Example: use -z ``sip,stat,ip.addr==1.2.3.4'' to only collect stats for SIP packets exchanged by the host at IP address 1.2.3.4 .
See the manual page of pcap-filter(4) or, if that doesn't exist, tcpdump(8).
For a complete table of protocol and protocol fields that are filterable in TShark see the wireshark-filter(4) manual page.
These files contains various Wireshark configuration values.
The preferences settings are in the form prefname:value, one per line, where prefname is the name of the preference and value is the value to which it should be set; white space is allowed between : and value. A preference setting can be continued on subsequent lines by indenting the continuation lines with white space. A # character starts a comment that runs to the end of the line:
# Capture in promiscuous mode? # TRUE or FALSE (case-insensitive). capture.prom_mode: TRUE
The global preferences file is looked for in the wireshark directory under the share subdirectory of the main installation directory (for example, /usr/local/share/wireshark/preferences) on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark\preferences) on Windows systems.
The personal preferences file is looked for in $HOME/.wireshark/preferences on UNIX-compatible systems and %APPDATA%\Wireshark\preferences (or, if %APPDATA% isn't defined, %USERPROFILE%\Application Data\Wireshark\preferences) on Windows systems.
http tcp # a comment
The global disabled_protos file uses the same directory as the global preferences file.
The personal disabled_protos file uses the same directory as the personal preferences file.
Each line contains one hardware address and name, separated by whitespace. The digits of the hardware address are separated by colons (:), dashes (-) or periods (.). The same separator character must be used consistently in an address. The following three lines are valid lines of an ethers file:
ff:ff:ff:ff:ff:ff Broadcast c0-00-ff-ff-ff-ff TR_broadcast 00.00.00.00.00.00 Zero_broadcast
The global ethers file is looked for in the /etc directory on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ethers file is looked for in the same directory as the personal preferences file.
00:00:0C Cisco
can be provided, with the 3-byte OUI and the name for a vendor, and entries such as:
00-00-0C-07-AC/40 All-HSRP-routers
can be specified, with a MAC address and a mask indicating how many bits of the address must match. The above entry, for example, has 40 significant bits, or 5 bytes, and would match addresses from 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a multiple of 8.
The manuf file is looked for in the same directory as the global preferences file.
The format is the same as the ethers file, except that each address is four bytes instead of six. Additionally, the address can be represented as a single hexadecimal number, as is more common in the IPX world, rather than four hex octets. For example, these four lines are valid lines of an ipxnets file:
C0.A8.2C.00 HR c0-a8-1c-00 CEO 00:00:BE:EF IT_Server1 110f FileServer3
The global ipxnets file is looked for in the /etc directory on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ipxnets file is looked for in the same directory as the personal preferences file.
wireshark-filter(4), wireshark(1), editcap(1), pcap-filter(4), tcpdump(8),
pcap(3), dumpcap(1), text2pcap(1)
TShark is part of the Wireshark distribution. The latest version of Wireshark can be found at http://www.wireshark.org.
HTML versions of the Wireshark project man pages are available at: http://www.wireshark.org/docs/man-pages.
TShark uses the same packet dissection code that Wireshark does, as well as using many other modules from Wireshark; see the list of authors in the Wireshark man page for a list of authors of that code.