# lsq.rra is real rectangular matrix stored in compressed sparse column for mat read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o X <- model.matrix(hb.o) #extract the design matrix y <- model.response(hb.o) # extract the rhs X1 <- as.matrix(X) slm.time <- unix.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- unix.time(lm(y~X1-1) -> lm.o) # very slow cat("slm time =",slm.time,"\n") cat("lm time =",lm.time,"\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.lm <- summary(lm.o) sum.lm$coef <- sum.lm$coef[1:5,] sum.slm sum.lm slm.fit.time <- unix.time(slm.fit(X,y)) # very fast lm.fit.time <- unix.time(lm.fit(X1,y)) # still very slow cat("slm.fit time =",slm.fit.time,"\n") cat("lm.fit time =",lm.fit.time,"\n")