## Simulate VAR(2)-data library(dse1) library(vars) ## Setting the lag-polynomial A(L) Apoly <- array(c(1.0, -0.5, 0.3, 0, 0.2, 0.1, 0, -0.2, 0.7, 1, 0.5, -0.3) , c(3, 2, 2)) ## Setting Covariance to identity-matrix B <- diag(2) ## Setting constant term to 5 and 10 TRD <- c(5, 10) ## Generating the VAR(2) model var2 <- ARMA(A = Apoly, B = B, TREND = TRD) ## Simulating 500 observations varsim <- simulate(var2, sampleT = 500, noise = list(w = matrix(rnorm(1000), nrow = 500, ncol = 2)), rng = list(seed = c(123456))) ## Obtaining the generated series vardat <- matrix(varsim$output, nrow = 500, ncol = 2) colnames(vardat) <- c("y1", "y2") ## Plotting the series plot.ts(vardat, main = "", xlab = "") ## Determining an appropriate lag-order infocrit <- VARselect(vardat, lag.max = 3, type = "const") ## Estimating the model varsimest <- VAR(vardat, p = 2, type = "const", season = NULL, exogen = NULL) ## Alternatively, selection according to AIC varsimest <- VAR(vardat, type = "const", lag.max = 3, ic = "SC") ## Checking the roots roots <- roots(varsimest)