///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2014-2014 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_DETAIL_MATH_HPP #define BOOST_INTRUSIVE_DETAIL_MATH_HPP #ifndef BOOST_CONFIG_HPP # include #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include #include namespace boost { namespace intrusive { namespace detail { /////////////////////////// // floor_log2 Dispatcher //////////////////////////// #if defined(_MSC_VER) && (_MSC_VER >= 1300) }}} //namespace boost::intrusive::detail //Use _BitScanReverseXX intrinsics #if defined(_M_X64) || defined(_M_AMD64) || defined(_M_IA64) //64 bit target #define BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT #endif #ifndef __INTRIN_H_ // Avoid including any windows system header #ifdef __cplusplus extern "C" { #endif // __cplusplus #if defined(BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT) //64 bit target unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); #pragma intrinsic(_BitScanReverse64) #else //32 bit target unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); #pragma intrinsic(_BitScanReverse) #endif #ifdef __cplusplus } #endif // __cplusplus #endif // __INTRIN_H_ #ifdef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT #define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse64 #undef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT #else #define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse #endif namespace boost { namespace intrusive { namespace detail { inline std::size_t floor_log2 (std::size_t x) { unsigned long log2; BOOST_INTRUSIVE_BSR_INTRINSIC( &log2, (unsigned long)x ); return log2; } #undef BOOST_INTRUSIVE_BSR_INTRINSIC #elif defined(__GNUC__) && ((__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) //GCC >=3.4 //Compile-time error in case of missing specialization template struct builtin_clz_dispatch; #if defined(BOOST_HAS_LONG_LONG) template<> struct builtin_clz_dispatch< ::boost::ulong_long_type > { static ::boost::ulong_long_type call(::boost::ulong_long_type n) { return __builtin_clzll(n); } }; #endif template<> struct builtin_clz_dispatch { static unsigned long call(unsigned long n) { return __builtin_clzl(n); } }; template<> struct builtin_clz_dispatch { static unsigned int call(unsigned int n) { return __builtin_clz(n); } }; inline std::size_t floor_log2(std::size_t n) { return sizeof(std::size_t)*CHAR_BIT - std::size_t(1) - builtin_clz_dispatch::call(n); } #else //Portable methods //////////////////////////// // Generic method //////////////////////////// inline std::size_t floor_log2_get_shift(std::size_t n, true_ )//power of two size_t { return n >> 1; } inline std::size_t floor_log2_get_shift(std::size_t n, false_ )//non-power of two size_t { return (n >> 1) + ((n & 1u) & (n != 1)); } template inline std::size_t floor_log2 (std::size_t x, integral_constant) { const std::size_t Bits = N; const bool Size_t_Bits_Power_2= !(Bits & (Bits-1)); std::size_t n = x; std::size_t log2 = 0; std::size_t remaining_bits = Bits; std::size_t shift = floor_log2_get_shift(remaining_bits, bool_()); while(shift){ std::size_t tmp = n >> shift; if (tmp){ log2 += shift, n = tmp; } shift = floor_log2_get_shift(shift, bool_()); } return log2; } //////////////////////////// // DeBruijn method //////////////////////////// //Taken from: //http://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers //Thanks to Desmond Hume inline std::size_t floor_log2 (std::size_t v, integral_constant) { static const int MultiplyDeBruijnBitPosition[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return MultiplyDeBruijnBitPosition[(std::size_t)(v * 0x07C4ACDDU) >> 27]; } inline std::size_t floor_log2 (std::size_t v, integral_constant) { static const std::size_t MultiplyDeBruijnBitPosition[64] = { 63, 0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5}; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; return MultiplyDeBruijnBitPosition[((std::size_t)((v - (v >> 1))*0x07EDD5E59A4E28C2ULL)) >> 58]; } inline std::size_t floor_log2 (std::size_t x) { const std::size_t Bits = sizeof(std::size_t)*CHAR_BIT; return floor_log2(x, integral_constant()); } #endif //Thanks to Laurent de Soras in //http://www.flipcode.com/archives/Fast_log_Function.shtml inline float fast_log2 (float val) { union caster_t { unsigned x; float val; } caster; caster.val = val; unsigned x = caster.x; const int log_2 = int((x >> 23) & 255) - 128; x &= ~(unsigned(255u) << 23u); x += unsigned(127) << 23u; caster.x = x; val = caster.val; //1+log2(m), m ranging from 1 to 2 //3rd degree polynomial keeping first derivate continuity. //For less precision the line can be commented out val = ((-1.f/3.f) * val + 2.f) * val - (2.f/3.f); return val + static_cast(log_2); } inline std::size_t ceil_log2 (std::size_t x) { return static_cast((x & (x-1)) != 0) + floor_log2(x); } template struct numbits_eq { static const bool value = sizeof(SizeType)*CHAR_BIT == N; }; template struct sqrt2_pow_max; template struct sqrt2_pow_max >::type> { static const SizeType value = 0xb504f334; static const std::size_t pow = 31; }; #ifndef BOOST_NO_INT64_T template struct sqrt2_pow_max >::type> { static const SizeType value = 0xb504f333f9de6484ull; static const std::size_t pow = 63; }; #endif //BOOST_NO_INT64_T // Returns floor(pow(sqrt(2), x * 2 + 1)). // Defined for X from 0 up to the number of bits in size_t minus 1. inline std::size_t sqrt2_pow_2xplus1 (std::size_t x) { const std::size_t value = (std::size_t)sqrt2_pow_max::value; const std::size_t pow = (std::size_t)sqrt2_pow_max::pow; return (value >> (pow - x)) + 1; } } //namespace detail } //namespace intrusive } //namespace boost #endif //BOOST_INTRUSIVE_DETAIL_MATH_HPP