/* [auto_generated] boost/numeric/odeint/integrate/integrate_adaptive.hpp [begin_description] Adaptive integration of ODEs. [end_description] Copyright 2011-2013 Karsten Ahnert Copyright 2011-2012 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_ADAPTIVE_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_ADAPTIVE_HPP_INCLUDED #include #include #include #include namespace boost { namespace numeric { namespace odeint { /* * the two overloads are needed in order to solve the forwarding problem */ template< class Stepper , class System , class State , class Time , class Observer > size_t integrate_adaptive( Stepper stepper , System system , State &start_state , Time start_time , Time end_time , Time dt , Observer observer ) { typedef typename odeint::unwrap_reference< Stepper >::type::stepper_category stepper_category; return detail::integrate_adaptive( stepper , system , start_state , start_time , end_time , dt , observer , stepper_category() ); /* * Suggestion for a new extendable version: * * integrator_adaptive< Stepper , System, State , Time , Observer , typename Stepper::stepper_category > integrator; * return integrator.run( stepper , system , start_state , start_time , end_time , dt , observer ); */ } /** * \brief Second version to solve the forwarding problem, * can be called with Boost.Range as start_state. */ template< class Stepper , class System , class State , class Time , class Observer > size_t integrate_adaptive( Stepper stepper , System system , const State &start_state , Time start_time , Time end_time , Time dt , Observer observer ) { typedef typename odeint::unwrap_reference< Stepper >::type::stepper_category stepper_category; return detail::integrate_adaptive( stepper , system , start_state , start_time , end_time , dt , observer , stepper_category() ); } /** * \brief integrate_adaptive without an observer. */ template< class Stepper , class System , class State , class Time > size_t integrate_adaptive( Stepper stepper , System system , State &start_state , Time start_time , Time end_time , Time dt ) { return integrate_adaptive( stepper , system , start_state , start_time , end_time , dt , null_observer() ); } /** * \brief Second version to solve the forwarding problem, * can be called with Boost.Range as start_state. */ template< class Stepper , class System , class State , class Time > size_t integrate_adaptive( Stepper stepper , System system , const State &start_state , Time start_time , Time end_time , Time dt ) { return integrate_adaptive( stepper , system , start_state , start_time , end_time , dt , null_observer() ); } /************* DOXYGEN ************/ /** * \fn integrate_adaptive( Stepper stepper , System system , State &start_state , Time start_time , Time end_time , Time dt , Observer observer ) * \brief Integrates the ODE with adaptive step size. * * This function integrates the ODE given by system with the given stepper. * The observer is called after each step. If the stepper has no error * control, the step size remains constant and the observer is called at * equidistant time points t0+n*dt. If the stepper is a ControlledStepper, * the step size is adjusted and the observer is called in non-equidistant * intervals. * * \param stepper The stepper to be used for numerical integration. * \param system Function/Functor defining the rhs of the ODE. * \param start_state The initial condition x0. * \param start_time The initial time t0. * \param end_time The final integration time tend. * \param dt The time step between observer calls, _not_ necessarily the * time step of the integration. * \param observer Function/Functor called at equidistant time intervals. * \return The number of steps performed. */ } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_ADAPTIVE_HPP_INCLUDED