/* [auto_generated] boost/numeric/odeint/integrate/integrate_n_steps.hpp [begin_description] Integration of n steps with constant time size. Adaptive and dense-output methods are fully supported. [end_description] Copyright 2011-2013 Karsten Ahnert Copyright 2011-2012 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_N_STEPS_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_N_STEPS_HPP_INCLUDED #include #include #include #include namespace boost { namespace numeric { namespace odeint { /* * Integrates n steps * * the two overloads are needed in order to solve the forwarding problem */ template< class Stepper , class System , class State , class Time , class Observer> Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer ) { typedef typename odeint::unwrap_reference< Stepper >::type::stepper_category stepper_category; return detail::integrate_n_steps( stepper , system , start_state , start_time , dt , num_of_steps , observer , stepper_category() ); } /** * \brief Solves the forwarding problem, can be called with Boost.Range as start_state. */ template< class Stepper , class System , class State , class Time , class Observer > Time integrate_n_steps( Stepper stepper , System system , const State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer ) { typedef typename odeint::unwrap_reference< Stepper >::type::stepper_category stepper_category; return detail::integrate_n_steps( stepper , system , start_state , start_time , dt , num_of_steps , observer , stepper_category() ); } /** * \brief The same function as above, but without observer calls. */ template< class Stepper , class System , class State , class Time > Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps ) { return integrate_n_steps( stepper , system , start_state , start_time , dt , num_of_steps , null_observer() ); } /** * \brief Solves the forwarding problem, can be called with Boost.Range as start_state. */ template< class Stepper , class System , class State , class Time > Time integrate_n_steps( Stepper stepper , System system , const State &start_state , Time start_time , Time dt , size_t num_of_steps ) { return integrate_n_steps( stepper , system , start_state , start_time , dt , num_of_steps , null_observer() ); } /************* DOXYGEN *************/ /** * \fn Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer ) * \brief Integrates the ODE with constant step size. * * This function is similar to integrate_const. The observer is called at * equidistant time intervals t0 + n*dt. * If the Stepper is a normal stepper without step size control, dt is also * used for the numerical scheme. If a ControlledStepper is provided, the * algorithm might reduce the step size to meet the error bounds, but it is * ensured that the observer is always called at equidistant time points * t0 + n*dt. If a DenseOutputStepper is used, the step size also may vary * and the dense output is used to call the observer at equidistant time * points. The final integration time is always t0 + num_of_steps*dt. * * \param stepper The stepper to be used for numerical integration. * \param system Function/Functor defining the rhs of the ODE. * \param start_state The initial condition x0. * \param start_time The initial time t0. * \param dt The time step between observer calls, _not_ necessarily the * time step of the integration. * \param num_of_steps Number of steps to be performed * \param observer Function/Functor called at equidistant time intervals. * \return The number of steps performed. */ } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_N_STEPS_HPP_INCLUDED