The following two toy attribute grammars may prove instructive. The first is an attribute grammar for the classic context-sensitive grammar { a^n b^n c^n | n >= 0 }. It demonstrates the use of conditionals, inherited and synthesized attributes.
{ module ABCParser (parse) where } %tokentype { Char } %token a { 'a' } %token b { 'b' } %token c { 'c' } %token newline { '\n' } %attributetype { Attrs a } %attribute value { a } %attribute len { Int } %name parse abcstring %% abcstring : alist blist clist newline { $$ = $1 ++ $2 ++ $3 ; $2.len = $1.len ; $3.len = $1.len } alist : a alist { $$ = $1 : $2 ; $$.len = $2.len + 1 } | { $$ = []; $$.len = 0 } blist : b blist { $$ = $1 : $2 ; $2.len = $$.len - 1 } | { $$ = [] ; where failUnless ($$.len == 0) "blist wrong length" } clist : c clist { $$ = $1 : $2 ; $2.len = $$.len - 1 } | { $$ = [] ; where failUnless ($$.len == 0) "clist wrong length" } { happyError = error "parse error" failUnless b msg = if b then () else error msg }
This grammar parses binary numbers and calculates their value. It demonstrates the use of inherited and synthesized attributes.
{ module BitsParser (parse) where } %tokentype { Char } %token minus { '-' } %token plus { '+' } %token one { '1' } %token zero { '0' } %token newline { '\n' } %attributetype { Attrs } %attribute value { Integer } %attribute pos { Int } %name parse start %% start : num newline { $$ = $1 } num : bits { $$ = $1 ; $1.pos = 0 } | plus bits { $$ = $2 ; $2.pos = 0 } | minus bits { $$ = negate $2; $2.pos = 0 } bits : bit { $$ = $1 ; $1.pos = $$.pos } | bits bit { $$ = $1 + $2 ; $1.pos = $$.pos + 1 ; $2.pos = $$.pos } bit : zero { $$ = 0 } | one { $$ = 2^($$.pos) } { happyError = error "parse error" }