O_sym Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "O_sym", "O_def", "ga_non_empty_sort_QReg", "Ax1" Prover: SPASS cmps_PP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PP", "P_def", "ga_non_empty_sort_QReg", "Ax1", "C_non_null" Prover: SPASS P_impl_C Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "P_impl_C", "Ax1", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS P_impl_O Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "P_impl_O", "Ax1", "P_def", "ga_non_empty_sort_QReg", "O_def" Prover: SPASS O_impl_C Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "O_impl_C", "O_def", "ga_non_empty_sort_QReg", "Ax1", "C_sym", "P_impl_C", "P_def" Prover: SPASS NTP_impl_C Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "NTP_impl_C", "Ax1", "O_impl_C", "NTP_def", "ga_non_empty_sort_QReg" Prover: SPASS NTP_impl_P Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "NTP_impl_P", "P_def", "ga_non_empty_sort_QReg", "Ax1", "C_non_null", "O_impl_C", "NTP_def" Prover: SPASS P_inh_O Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "P_inh_O", "O_def", "ga_non_empty_sort_QReg", "Ax1", "O_sym", "cmps_PP" Prover: SPASS extens Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "extens", "C_id", "ga_non_empty_sort_QReg", "P_def" Prover: SPASS NTP_trans Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "NTP_trans", "NTP_impl_P", "cmps_P_NTP" Prover: SPASS cmps_NTP_P Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTP_P", "NTP_def", "ga_non_empty_sort_QReg", "O_def", "Ax1", "cmps_PP" Prover: SPASS cmps_P_NTP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_P_NTP", "NTP_def", "ga_non_empty_sort_QReg", "P_def" Prover: SPASS