(* =========================================================== *) (* Miscellaneous functions *) (* Author: Alexey Solovyev *) (* Date: 2012-10-27 *) (* =========================================================== *) module Arith_misc = struct (* A little faster version of PROVE_HYP *) let MY_PROVE_HYP hyp th = EQ_MP (DEDUCT_ANTISYM_RULE hyp th) hyp;; (* A faster version of BETA_RULE *) let MY_BETA_RULE th = let rec beta tm = let op, arg = dest_comb tm in if is_comb op then let op_th = AP_THM (beta op) arg in let beta_th = BETA_CONV (rand (concl op_th)) in TRANS op_th beta_th else BETA_CONV tm in EQ_MP (beta (concl th)) th;; (* Applies f to arg n times and returns the total execution time *) let test n f arg = let start = Sys.time() in for i = 1 to n do let _ = f arg in () done; Sys.time() -. start;; (* Generates a power function for the given binary operation *) let gen_pow op id n x = let ( * ) = op in let rec pow n = if n <= 0 then id else if n = 1 then x else if n land 1 = 1 then x * pow (n - 1) else let t = pow (n lsr 1) in t * t in pow n;; let rec shape_list n list = if length list <= n then [list] else let l1, l2 = chop_list n list in l1 :: shape_list n l2;; (* map2 which works for lists of any size (no requirement |l1| = |l2|) *) let rec my_map2 f l1 l2 = match l1 with | [] -> [] | (h1::t1) -> (match l2 with | [] -> [] | (h2::t2) -> (f h1 h2) :: my_map2 f t1 t2);; end;;