""" A collection of utility functions and classes. Originally, many (but not all) were from the Python Cookbook -- hence the name cbook. This module is safe to import from anywhere within matplotlib; it imports matplotlib only at runtime. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange, zip from itertools import repeat import collections import datetime import errno from functools import reduce import glob import gzip import io import locale import os import re import sys import time import traceback import types import warnings from weakref import ref, WeakKeyDictionary import numpy as np import numpy.ma as ma class MatplotlibDeprecationWarning(UserWarning): """ A class for issuing deprecation warnings for Matplotlib users. In light of the fact that Python builtin DeprecationWarnings are ignored by default as of Python 2.7 (see link below), this class was put in to allow for the signaling of deprecation, but via UserWarnings which are not ignored by default. http://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x """ pass mplDeprecation = MatplotlibDeprecationWarning def _generate_deprecation_message(since, message='', name='', alternative='', pending=False, obj_type='attribute'): if not message: altmessage = '' if pending: message = ( 'The %(func)s %(obj_type)s will be deprecated in a ' 'future version.') else: message = ( 'The %(func)s %(obj_type)s was deprecated in version ' '%(since)s.') if alternative: altmessage = ' Use %s instead.' % alternative message = ((message % { 'func': name, 'name': name, 'alternative': alternative, 'obj_type': obj_type, 'since': since}) + altmessage) return message def warn_deprecated( since, message='', name='', alternative='', pending=False, obj_type='attribute'): """ Used to display deprecation warning in a standard way. Parameters ------------ since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(func)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated function; if not provided the name is automatically determined from the passed in function, though this is useful in the case of renamed functions, where the new function is just assigned to the name of the deprecated function. For example:: def new_function(): ... oldFunction = new_function alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. obj_type : str, optional The object type being deprecated. Examples -------- Basic example:: # To warn of the deprecation of "matplotlib.name_of_module" warn_deprecated('1.4.0', name='matplotlib.name_of_module', obj_type='module') """ message = _generate_deprecation_message( since, message, name, alternative, pending, obj_type) warnings.warn(message, mplDeprecation, stacklevel=1) def deprecated(since, message='', name='', alternative='', pending=False, obj_type='function'): """ Decorator to mark a function as deprecated. Parameters ------------ since : str The release at which this API became deprecated. This is required. message : str, optional Override the default deprecation message. The format specifier `%(func)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated function; if not provided the name is automatically determined from the passed in function, though this is useful in the case of renamed functions, where the new function is just assigned to the name of the deprecated function. For example:: def new_function(): ... oldFunction = new_function alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. Examples -------- Basic example:: @deprecated('1.4.0') def the_function_to_deprecate(): pass """ def deprecate(func, message=message, name=name, alternative=alternative, pending=pending): import functools import textwrap if isinstance(func, classmethod): try: func = func.__func__ except AttributeError: # classmethods in Python2.6 and below lack the __func__ # attribute so we need to hack around to get it method = func.__get__(None, object) if hasattr(method, '__func__'): func = method.__func__ elif hasattr(method, 'im_func'): func = method.im_func else: # Nothing we can do really... just return the original # classmethod return func is_classmethod = True else: is_classmethod = False if not name: name = func.__name__ message = _generate_deprecation_message( since, message, name, alternative, pending, obj_type) @functools.wraps(func) def deprecated_func(*args, **kwargs): warnings.warn(message, mplDeprecation, stacklevel=2) return func(*args, **kwargs) old_doc = deprecated_func.__doc__ if not old_doc: old_doc = '' old_doc = textwrap.dedent(old_doc).strip('\n') message = message.strip() new_doc = (('\n.. deprecated:: %(since)s' '\n %(message)s\n\n' % {'since': since, 'message': message}) + old_doc) if not old_doc: # This is to prevent a spurious 'unexected unindent' warning from # docutils when the original docstring was blank. new_doc += r'\ ' deprecated_func.__doc__ = new_doc if is_classmethod: deprecated_func = classmethod(deprecated_func) return deprecated_func return deprecate # On some systems, locale.getpreferredencoding returns None, # which can break unicode; and the sage project reports that # some systems have incorrect locale specifications, e.g., # an encoding instead of a valid locale name. Another # pathological case that has been reported is an empty string. # On some systems, getpreferredencoding sets the locale, which has # side effects. Passing False eliminates those side effects. def unicode_safe(s): import matplotlib if isinstance(s, bytes): try: preferredencoding = locale.getpreferredencoding( matplotlib.rcParams['axes.formatter.use_locale']).strip() if not preferredencoding: preferredencoding = None except (ValueError, ImportError, AttributeError): preferredencoding = None if preferredencoding is None: return six.text_type(s) else: return six.text_type(s, preferredencoding) return s class converter(object): """ Base class for handling string -> python type with support for missing values """ def __init__(self, missing='Null', missingval=None): self.missing = missing self.missingval = missingval def __call__(self, s): if s == self.missing: return self.missingval return s def is_missing(self, s): return not s.strip() or s == self.missing class tostr(converter): 'convert to string or None' def __init__(self, missing='Null', missingval=''): converter.__init__(self, missing=missing, missingval=missingval) class todatetime(converter): 'convert to a datetime or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.datetime(*tup[:6]) class todate(converter): 'convert to a date or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.date(*tup[:3]) class tofloat(converter): 'convert to a float or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) self.missingval = missingval def __call__(self, s): if self.is_missing(s): return self.missingval return float(s) class toint(converter): 'convert to an int or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) def __call__(self, s): if self.is_missing(s): return self.missingval return int(s) class _BoundMethodProxy(object): ''' Our own proxy object which enables weak references to bound and unbound methods and arbitrary callables. Pulls information about the function, class, and instance out of a bound method. Stores a weak reference to the instance to support garbage collection. @organization: IBM Corporation @copyright: Copyright (c) 2005, 2006 IBM Corporation @license: The BSD License Minor bugfixes by Michael Droettboom ''' def __init__(self, cb): self._hash = hash(cb) self._destroy_callbacks = [] try: try: if six.PY3: self.inst = ref(cb.__self__, self._destroy) else: self.inst = ref(cb.im_self, self._destroy) except TypeError: self.inst = None if six.PY3: self.func = cb.__func__ self.klass = cb.__self__.__class__ else: self.func = cb.im_func self.klass = cb.im_class except AttributeError: self.inst = None self.func = cb self.klass = None def add_destroy_callback(self, callback): self._destroy_callbacks.append(_BoundMethodProxy(callback)) def _destroy(self, wk): for callback in self._destroy_callbacks: try: callback(self) except ReferenceError: pass def __getstate__(self): d = self.__dict__.copy() # de-weak reference inst inst = d['inst'] if inst is not None: d['inst'] = inst() return d def __setstate__(self, statedict): self.__dict__ = statedict inst = statedict['inst'] # turn inst back into a weakref if inst is not None: self.inst = ref(inst) def __call__(self, *args, **kwargs): ''' Proxy for a call to the weak referenced object. Take arbitrary params to pass to the callable. Raises `ReferenceError`: When the weak reference refers to a dead object ''' if self.inst is not None and self.inst() is None: raise ReferenceError elif self.inst is not None: # build a new instance method with a strong reference to the # instance mtd = types.MethodType(self.func, self.inst()) else: # not a bound method, just return the func mtd = self.func # invoke the callable and return the result return mtd(*args, **kwargs) def __eq__(self, other): ''' Compare the held function and instance with that held by another proxy. ''' try: if self.inst is None: return self.func == other.func and other.inst is None else: return self.func == other.func and self.inst() == other.inst() except Exception: return False def __ne__(self, other): ''' Inverse of __eq__. ''' return not self.__eq__(other) def __hash__(self): return self._hash class CallbackRegistry(object): """ Handle registering and disconnecting for a set of signals and callbacks: >>> def oneat(x): ... print('eat', x) >>> def ondrink(x): ... print('drink', x) >>> from matplotlib.cbook import CallbackRegistry >>> callbacks = CallbackRegistry() >>> id_eat = callbacks.connect('eat', oneat) >>> id_drink = callbacks.connect('drink', ondrink) >>> callbacks.process('drink', 123) drink 123 >>> callbacks.process('eat', 456) eat 456 >>> callbacks.process('be merry', 456) # nothing will be called >>> callbacks.disconnect(id_eat) >>> callbacks.process('eat', 456) # nothing will be called In practice, one should always disconnect all callbacks when they are no longer needed to avoid dangling references (and thus memory leaks). However, real code in matplotlib rarely does so, and due to its design, it is rather difficult to place this kind of code. To get around this, and prevent this class of memory leaks, we instead store weak references to bound methods only, so when the destination object needs to die, the CallbackRegistry won't keep it alive. The Python stdlib weakref module can not create weak references to bound methods directly, so we need to create a proxy object to handle weak references to bound methods (or regular free functions). This technique was shared by Peter Parente on his `"Mindtrove" blog `_. """ def __init__(self): self.callbacks = dict() self._cid = 0 self._func_cid_map = {} def __getstate__(self): # We cannot currently pickle the callables in the registry, so # return an empty dictionary. return {} def __setstate__(self, state): # re-initialise an empty callback registry self.__init__() def connect(self, s, func): """ register *func* to be called when a signal *s* is generated func will be called """ self._func_cid_map.setdefault(s, WeakKeyDictionary()) # Note proxy not needed in python 3. # TODO rewrite this when support for python2.x gets dropped. proxy = _BoundMethodProxy(func) if proxy in self._func_cid_map[s]: return self._func_cid_map[s][proxy] proxy.add_destroy_callback(self._remove_proxy) self._cid += 1 cid = self._cid self._func_cid_map[s][proxy] = cid self.callbacks.setdefault(s, dict()) self.callbacks[s][cid] = proxy return cid def _remove_proxy(self, proxy): for signal, proxies in list(six.iteritems(self._func_cid_map)): try: del self.callbacks[signal][proxies[proxy]] except KeyError: pass if len(self.callbacks[signal]) == 0: del self.callbacks[signal] del self._func_cid_map[signal] def disconnect(self, cid): """ disconnect the callback registered with callback id *cid* """ for eventname, callbackd in list(six.iteritems(self.callbacks)): try: del callbackd[cid] except KeyError: continue else: for signal, functions in list( six.iteritems(self._func_cid_map)): for function, value in list(six.iteritems(functions)): if value == cid: del functions[function] return def process(self, s, *args, **kwargs): """ process signal *s*. All of the functions registered to receive callbacks on *s* will be called with *\*args* and *\*\*kwargs* """ if s in self.callbacks: for cid, proxy in list(six.iteritems(self.callbacks[s])): try: proxy(*args, **kwargs) except ReferenceError: self._remove_proxy(proxy) class silent_list(list): """ override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is meant to be used for a homogeneous list of a given type """ def __init__(self, type, seq=None): self.type = type if seq is not None: self.extend(seq) def __repr__(self): return '' % (len(self), self.type) def __str__(self): return repr(self) def __getstate__(self): # store a dictionary of this SilentList's state return {'type': self.type, 'seq': self[:]} def __setstate__(self, state): self.type = state['type'] self.extend(state['seq']) class IgnoredKeywordWarning(UserWarning): """ A class for issuing warnings about keyword arguments that will be ignored by matplotlib """ pass def local_over_kwdict(local_var, kwargs, *keys): """ Enforces the priority of a local variable over potentially conflicting argument(s) from a kwargs dict. The following possible output values are considered in order of priority: local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]] The first of these whose value is not None will be returned. If all are None then None will be returned. Each key in keys will be removed from the kwargs dict in place. Parameters ------------ local_var: any object The local variable (highest priority) kwargs: dict Dictionary of keyword arguments; modified in place keys: str(s) Name(s) of keyword arguments to process, in descending order of priority Returns --------- out: any object Either local_var or one of kwargs[key] for key in keys Raises -------- IgnoredKeywordWarning For each key in keys that is removed from kwargs but not used as the output value """ out = local_var for key in keys: kwarg_val = kwargs.pop(key, None) if kwarg_val is not None: if out is None: out = kwarg_val else: warnings.warn('"%s" keyword argument will be ignored' % key, IgnoredKeywordWarning) return out def strip_math(s): 'remove latex formatting from mathtext' remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}') s = s[1:-1] for r in remove: s = s.replace(r, '') return s class Bunch(object): """ Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary's OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to group a few variables:: >>> point = Bunch(datum=2, squared=4, coord=12) >>> point.datum By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308 """ def __init__(self, **kwds): self.__dict__.update(kwds) def __repr__(self): keys = six.iterkeys(self.__dict__) return 'Bunch(%s)' % ', '.join(['%s=%s' % (k, self.__dict__[k]) for k in keys]) def unique(x): 'Return a list of unique elements of *x*' return list(six.iterkeys(dict([(val, 1) for val in x]))) def iterable(obj): 'return true if *obj* is iterable' try: iter(obj) except TypeError: return False return True def is_string_like(obj): 'Return True if *obj* looks like a string' if isinstance(obj, six.string_types): return True # numpy strings are subclass of str, ma strings are not if ma.isMaskedArray(obj): if obj.ndim == 0 and obj.dtype.kind in 'SU': return True else: return False try: obj + '' except: return False return True def is_sequence_of_strings(obj): """ Returns true if *obj* is iterable and contains strings """ if not iterable(obj): return False if is_string_like(obj) and not isinstance(obj, np.ndarray): try: obj = obj.values except AttributeError: # not pandas return False for o in obj: if not is_string_like(o): return False return True def is_writable_file_like(obj): 'return true if *obj* looks like a file object with a *write* method' return hasattr(obj, 'write') and six.callable(obj.write) def file_requires_unicode(x): """ Returns `True` if the given writable file-like object requires Unicode to be written to it. """ try: x.write(b'') except TypeError: return True else: return False def is_scalar(obj): 'return true if *obj* is not string like and is not iterable' return not is_string_like(obj) and not iterable(obj) def is_numlike(obj): 'return true if *obj* looks like a number' try: obj + 1 except: return False else: return True def to_filehandle(fname, flag='rU', return_opened=False): """ *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in .gz. *flag* is a read/write flag for :func:`file` """ if is_string_like(fname): if fname.endswith('.gz'): # get rid of 'U' in flag for gzipped files. flag = flag.replace('U', '') fh = gzip.open(fname, flag) elif fname.endswith('.bz2'): # get rid of 'U' in flag for bz2 files flag = flag.replace('U', '') import bz2 fh = bz2.BZ2File(fname, flag) else: fh = open(fname, flag) opened = True elif hasattr(fname, 'seek'): fh = fname opened = False else: raise ValueError('fname must be a string or file handle') if return_opened: return fh, opened return fh def is_scalar_or_string(val): """Return whether the given object is a scalar or string like.""" return is_string_like(val) or not iterable(val) def _string_to_bool(s): if not is_string_like(s): return s if s == 'on': return True if s == 'off': return False raise ValueError("string argument must be either 'on' or 'off'") def get_sample_data(fname, asfileobj=True): """ Return a sample data file. *fname* is a path relative to the `mpl-data/sample_data` directory. If *asfileobj* is `True` return a file object, otherwise just a file path. Set the rc parameter examples.directory to the directory where we should look, if sample_data files are stored in a location different than default (which is 'mpl-data/sample_data` at the same level of 'matplotlib` Python module files). If the filename ends in .gz, the file is implicitly ungzipped. """ import matplotlib if matplotlib.rcParams['examples.directory']: root = matplotlib.rcParams['examples.directory'] else: root = os.path.join(os.path.dirname(__file__), "mpl-data", "sample_data") path = os.path.join(root, fname) if asfileobj: if (os.path.splitext(fname)[-1].lower() in ('.csv', '.xrc', '.txt')): mode = 'r' else: mode = 'rb' base, ext = os.path.splitext(fname) if ext == '.gz': return gzip.open(path, mode) else: return open(path, mode) else: return path def flatten(seq, scalarp=is_scalar_or_string): """ Returns a generator of flattened nested containers For example: >>> from matplotlib.cbook import flatten >>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]]) >>> print(list(flatten(l))) ['John', 'Hunter', 1, 23, 42, 5, 23] By: Composite of Holger Krekel and Luther Blissett From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook """ for item in seq: if scalarp(item): yield item else: for subitem in flatten(item, scalarp): yield subitem class Sorter(object): """ Sort by attribute or item Example usage:: sort = Sorter() list = [(1, 2), (4, 8), (0, 3)] dict = [{'a': 3, 'b': 4}, {'a': 5, 'b': 2}, {'a': 0, 'b': 0}, {'a': 9, 'b': 9}] sort(list) # default sort sort(list, 1) # sort by index 1 sort(dict, 'a') # sort a list of dicts by key 'a' """ def _helper(self, data, aux, inplace): aux.sort() result = [data[i] for junk, i in aux] if inplace: data[:] = result return result def byItem(self, data, itemindex=None, inplace=1): if itemindex is None: if inplace: data.sort() result = data else: result = data[:] result.sort() return result else: aux = [(data[i][itemindex], i) for i in range(len(data))] return self._helper(data, aux, inplace) def byAttribute(self, data, attributename, inplace=1): aux = [(getattr(data[i], attributename), i) for i in range(len(data))] return self._helper(data, aux, inplace) # a couple of handy synonyms sort = byItem __call__ = byItem class Xlator(dict): """ All-in-one multiple-string-substitution class Example usage:: text = "Larry Wall is the creator of Perl" adict = { "Larry Wall" : "Guido van Rossum", "creator" : "Benevolent Dictator for Life", "Perl" : "Python", } print multiple_replace(adict, text) xlat = Xlator(adict) print xlat.xlat(text) """ def _make_regex(self): """ Build re object based on the keys of the current dictionary """ return re.compile("|".join(map(re.escape, list(six.iterkeys(self))))) def __call__(self, match): """ Handler invoked for each regex *match* """ return self[match.group(0)] def xlat(self, text): """ Translate *text*, returns the modified text. """ return self._make_regex().sub(self, text) def soundex(name, len=4): """ soundex module conforming to Odell-Russell algorithm """ # digits holds the soundex values for the alphabet soundex_digits = '01230120022455012623010202' sndx = '' fc = '' # Translate letters in name to soundex digits for c in name.upper(): if c.isalpha(): if not fc: fc = c # Remember first letter d = soundex_digits[ord(c) - ord('A')] # Duplicate consecutive soundex digits are skipped if not sndx or (d != sndx[-1]): sndx += d # Replace first digit with first letter sndx = fc + sndx[1:] # Remove all 0s from the soundex code sndx = sndx.replace('0', '') # Return soundex code truncated or 0-padded to len characters return (sndx + (len * '0'))[:len] class Null(object): """ Null objects always and reliably "do nothing." """ def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __str__(self): return "Null()" def __repr__(self): return "Null()" if six.PY3: def __bool__(self): return 0 else: def __nonzero__(self): return 0 def __getattr__(self, name): return self def __setattr__(self, name, value): return self def __delattr__(self, name): return self def mkdirs(newdir, mode=0o777): """ make directory *newdir* recursively, and set *mode*. Equivalent to :: > mkdir -p NEWDIR > chmod MODE NEWDIR """ # this functionality is now in core python as of 3.2 # LPY DROP if six.PY3: os.makedirs(newdir, mode=mode, exist_ok=True) else: try: os.makedirs(newdir, mode=mode) except OSError as exception: if exception.errno != errno.EEXIST: raise class GetRealpathAndStat(object): def __init__(self): self._cache = {} def __call__(self, path): result = self._cache.get(path) if result is None: realpath = os.path.realpath(path) if sys.platform == 'win32': stat_key = realpath else: stat = os.stat(realpath) stat_key = (stat.st_ino, stat.st_dev) result = realpath, stat_key self._cache[path] = result return result get_realpath_and_stat = GetRealpathAndStat() def dict_delall(d, keys): 'delete all of the *keys* from the :class:`dict` *d*' for key in keys: try: del d[key] except KeyError: pass class RingBuffer(object): """ class that implements a not-yet-full buffer """ def __init__(self, size_max): self.max = size_max self.data = [] class __Full: """ class that implements a full buffer """ def append(self, x): """ Append an element overwriting the oldest one. """ self.data[self.cur] = x self.cur = (self.cur + 1) % self.max def get(self): """ return list of elements in correct order """ return self.data[self.cur:] + self.data[:self.cur] def append(self, x): """append an element at the end of the buffer""" self.data.append(x) if len(self.data) == self.max: self.cur = 0 # Permanently change self's class from non-full to full self.__class__ = __Full def get(self): """ Return a list of elements from the oldest to the newest. """ return self.data def __get_item__(self, i): return self.data[i % len(self.data)] def get_split_ind(seq, N): """ *seq* is a list of words. Return the index into seq such that:: len(' '.join(seq[:ind])<=N . """ sLen = 0 # todo: use Alex's xrange pattern from the cbook for efficiency for (word, ind) in zip(seq, xrange(len(seq))): sLen += len(word) + 1 # +1 to account for the len(' ') if sLen >= N: return ind return len(seq) def wrap(prefix, text, cols): 'wrap *text* with *prefix* at length *cols*' pad = ' ' * len(prefix.expandtabs()) available = cols - len(pad) seq = text.split(' ') Nseq = len(seq) ind = 0 lines = [] while ind < Nseq: lastInd = ind ind += get_split_ind(seq[ind:], available) lines.append(seq[lastInd:ind]) # add the prefix to the first line, pad with spaces otherwise ret = prefix + ' '.join(lines[0]) + '\n' for line in lines[1:]: ret += pad + ' '.join(line) + '\n' return ret # A regular expression used to determine the amount of space to # remove. It looks for the first sequence of spaces immediately # following the first newline, or at the beginning of the string. _find_dedent_regex = re.compile("(?:(?:\n\r?)|^)( *)\S") # A cache to hold the regexs that actually remove the indent. _dedent_regex = {} def dedent(s): """ Remove excess indentation from docstring *s*. Discards any leading blank lines, then removes up to n whitespace characters from each line, where n is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its deletion of leading blank lines and its use of the first non-blank line to determine the indentation. It is also faster in most cases. """ # This implementation has a somewhat obtuse use of regular # expressions. However, this function accounted for almost 30% of # matplotlib startup time, so it is worthy of optimization at all # costs. if not s: # includes case of s is None return '' match = _find_dedent_regex.match(s) if match is None: return s # This is the number of spaces to remove from the left-hand side. nshift = match.end(1) - match.start(1) if nshift == 0: return s # Get a regex that will remove *up to* nshift spaces from the # beginning of each line. If it isn't in the cache, generate it. unindent = _dedent_regex.get(nshift, None) if unindent is None: unindent = re.compile("\n\r? {0,%d}" % nshift) _dedent_regex[nshift] = unindent result = unindent.sub("\n", s).strip() return result def listFiles(root, patterns='*', recurse=1, return_folders=0): """ Recursively list files from Parmar and Martelli in the Python Cookbook """ import os.path import fnmatch # Expand patterns from semicolon-separated string to list pattern_list = patterns.split(';') results = [] for dirname, dirs, files in os.walk(root): # Append to results all relevant files (and perhaps folders) for name in files: fullname = os.path.normpath(os.path.join(dirname, name)) if return_folders or os.path.isfile(fullname): for pattern in pattern_list: if fnmatch.fnmatch(name, pattern): results.append(fullname) break # Block recursion if recursion was disallowed if not recurse: break return results def get_recursive_filelist(args): """ Recurse all the files and dirs in *args* ignoring symbolic links and return the files as a list of strings """ files = [] for arg in args: if os.path.isfile(arg): files.append(arg) continue if os.path.isdir(arg): newfiles = listFiles(arg, recurse=1, return_folders=1) files.extend(newfiles) return [f for f in files if not os.path.islink(f)] def pieces(seq, num=2): "Break up the *seq* into *num* tuples" start = 0 while 1: item = seq[start:start + num] if not len(item): break yield item start += num def exception_to_str(s=None): if six.PY3: sh = io.StringIO() else: sh = io.BytesIO() if s is not None: print(s, file=sh) traceback.print_exc(file=sh) return sh.getvalue() def allequal(seq): """ Return *True* if all elements of *seq* compare equal. If *seq* is 0 or 1 length, return *True* """ if len(seq) < 2: return True val = seq[0] for i in xrange(1, len(seq)): thisval = seq[i] if thisval != val: return False return True def alltrue(seq): """ Return *True* if all elements of *seq* evaluate to *True*. If *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if not val: return False return True def onetrue(seq): """ Return *True* if one element of *seq* is *True*. It *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if val: return True return False def allpairs(x): """ return all possible pairs in sequence *x* Condensed by Alex Martelli from this thread_ on c.l.python .. _thread: http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1 """ return [(s, f) for i, f in enumerate(x) for s in x[i + 1:]] class maxdict(dict): """ A dictionary with a maximum size; this doesn't override all the relevant methods to contrain size, just setitem, so use with caution """ def __init__(self, maxsize): dict.__init__(self) self.maxsize = maxsize self._killkeys = [] def __setitem__(self, k, v): if k not in self: if len(self) >= self.maxsize: del self[self._killkeys[0]] del self._killkeys[0] self._killkeys.append(k) dict.__setitem__(self, k, v) class Stack(object): """ Implement a stack where elements can be pushed on and you can move back and forth. But no pop. Should mimic home / back / forward in a browser """ def __init__(self, default=None): self.clear() self._default = default def __call__(self): 'return the current element, or None' if not len(self._elements): return self._default else: return self._elements[self._pos] def __len__(self): return self._elements.__len__() def __getitem__(self, ind): return self._elements.__getitem__(ind) def forward(self): 'move the position forward and return the current element' N = len(self._elements) if self._pos < N - 1: self._pos += 1 return self() def back(self): 'move the position back and return the current element' if self._pos > 0: self._pos -= 1 return self() def push(self, o): """ push object onto stack at current position - all elements occurring later than the current position are discarded """ self._elements = self._elements[:self._pos + 1] self._elements.append(o) self._pos = len(self._elements) - 1 return self() def home(self): 'push the first element onto the top of the stack' if not len(self._elements): return self.push(self._elements[0]) return self() def empty(self): return len(self._elements) == 0 def clear(self): 'empty the stack' self._pos = -1 self._elements = [] def bubble(self, o): """ raise *o* to the top of the stack and return *o*. *o* must be in the stack """ if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() bubbles = [] for thiso in old: if thiso == o: bubbles.append(thiso) else: self.push(thiso) for thiso in bubbles: self.push(o) return o def remove(self, o): 'remove element *o* from the stack' if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() for thiso in old: if thiso == o: continue else: self.push(thiso) def popall(seq): 'empty a list' for i in xrange(len(seq)): seq.pop() def finddir(o, match, case=False): """ return all attributes of *o* which match string in match. if case is True require an exact case match. """ if case: names = [(name, name) for name in dir(o) if is_string_like(name)] else: names = [(name.lower(), name) for name in dir(o) if is_string_like(name)] match = match.lower() return [orig for name, orig in names if name.find(match) >= 0] def reverse_dict(d): 'reverse the dictionary -- may lose data if values are not unique!' return dict([(v, k) for k, v in six.iteritems(d)]) def restrict_dict(d, keys): """ Return a dictionary that contains those keys that appear in both d and keys, with values from d. """ return dict([(k, v) for (k, v) in six.iteritems(d) if k in keys]) def report_memory(i=0): # argument may go away 'return the memory consumed by process' from matplotlib.compat.subprocess import Popen, PIPE pid = os.getpid() if sys.platform == 'sunos5': try: a2 = Popen('ps -p %d -o osz' % pid, shell=True, stdout=PIPE).stdout.readlines() except OSError: raise NotImplementedError( "report_memory works on Sun OS only if " "the 'ps' program is found") mem = int(a2[-1].strip()) elif sys.platform.startswith('linux'): try: a2 = Popen('ps -p %d -o rss,sz' % pid, shell=True, stdout=PIPE).stdout.readlines() except OSError: raise NotImplementedError( "report_memory works on Linux only if " "the 'ps' program is found") mem = int(a2[1].split()[1]) elif sys.platform.startswith('darwin'): try: a2 = Popen('ps -p %d -o rss,vsz' % pid, shell=True, stdout=PIPE).stdout.readlines() except OSError: raise NotImplementedError( "report_memory works on Mac OS only if " "the 'ps' program is found") mem = int(a2[1].split()[0]) elif sys.platform.startswith('win'): try: a2 = Popen(["tasklist", "/nh", "/fi", "pid eq %d" % pid], stdout=PIPE).stdout.read() except OSError: raise NotImplementedError( "report_memory works on Windows only if " "the 'tasklist' program is found") mem = int(a2.strip().split()[-2].replace(',', '')) else: raise NotImplementedError( "We don't have a memory monitor for %s" % sys.platform) return mem _safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d' def safezip(*args): 'make sure *args* are equal len before zipping' Nx = len(args[0]) for i, arg in enumerate(args[1:]): if len(arg) != Nx: raise ValueError(_safezip_msg % (Nx, i + 1, len(arg))) return list(zip(*args)) def issubclass_safe(x, klass): 'return issubclass(x, klass) and return False on a TypeError' try: return issubclass(x, klass) except TypeError: return False def safe_masked_invalid(x): x = np.asanyarray(x) try: xm = np.ma.masked_invalid(x, copy=False) xm.shrink_mask() except TypeError: return x return xm class MemoryMonitor(object): def __init__(self, nmax=20000): self._nmax = nmax self._mem = np.zeros((self._nmax,), np.int32) self.clear() def clear(self): self._n = 0 self._overflow = False def __call__(self): mem = report_memory() if self._n < self._nmax: self._mem[self._n] = mem self._n += 1 else: self._overflow = True return mem def report(self, segments=4): n = self._n segments = min(n, segments) dn = int(n / segments) ii = list(xrange(0, n, dn)) ii[-1] = n - 1 print() print('memory report: i, mem, dmem, dmem/nloops') print(0, self._mem[0]) for i in range(1, len(ii)): di = ii[i] - ii[i - 1] if di == 0: continue dm = self._mem[ii[i]] - self._mem[ii[i - 1]] print('%5d %5d %3d %8.3f' % (ii[i], self._mem[ii[i]], dm, dm / float(di))) if self._overflow: print("Warning: array size was too small for the number of calls.") def xy(self, i0=0, isub=1): x = np.arange(i0, self._n, isub) return x, self._mem[i0:self._n:isub] def plot(self, i0=0, isub=1, fig=None): if fig is None: from .pylab import figure fig = figure() ax = fig.add_subplot(111) ax.plot(*self.xy(i0, isub)) fig.canvas.draw() def print_cycles(objects, outstream=sys.stdout, show_progress=False): """ *objects* A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that are preventing some objects from being garbage collected. *outstream* The stream for output. *show_progress* If True, print the number of objects reached as they are found. """ import gc from types import FrameType def print_path(path): for i, step in enumerate(path): # next "wraps around" next = path[(i + 1) % len(path)] outstream.write(" %s -- " % str(type(step))) if isinstance(step, dict): for key, val in six.iteritems(step): if val is next: outstream.write("[%s]" % repr(key)) break if key is next: outstream.write("[key] = %s" % repr(val)) break elif isinstance(step, list): outstream.write("[%d]" % step.index(next)) elif isinstance(step, tuple): outstream.write("( tuple )") else: outstream.write(repr(step)) outstream.write(" ->\n") outstream.write("\n") def recurse(obj, start, all, current_path): if show_progress: outstream.write("%d\r" % len(all)) all[id(obj)] = None referents = gc.get_referents(obj) for referent in referents: # If we've found our way back to the start, this is # a cycle, so print it out if referent is start: print_path(current_path) # Don't go back through the original list of objects, or # through temporary references to the object, since those # are just an artifact of the cycle detector itself. elif referent is objects or isinstance(referent, FrameType): continue # We haven't seen this object before, so recurse elif id(referent) not in all: recurse(referent, start, all, current_path + [obj]) for obj in objects: outstream.write("Examining: %r\n" % (obj,)) recurse(obj, obj, {}, []) class Grouper(object): """ This class provides a lightweight way to group arbitrary objects together into disjoint sets when a full-blown graph data structure would be overkill. Objects can be joined using :meth:`join`, tested for connectedness using :meth:`joined`, and all disjoint sets can be retreived by using the object as an iterator. The objects being joined must be hashable and weak-referenceable. For example: >>> from matplotlib.cbook import Grouper >>> class Foo(object): ... def __init__(self, s): ... self.s = s ... def __repr__(self): ... return self.s ... >>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef'] >>> grp = Grouper() >>> grp.join(a, b) >>> grp.join(b, c) >>> grp.join(d, e) >>> sorted(map(tuple, grp)) [(a, b, c), (d, e)] >>> grp.joined(a, b) True >>> grp.joined(a, c) True >>> grp.joined(a, d) False """ def __init__(self, init=()): mapping = self._mapping = {} for x in init: mapping[ref(x)] = [ref(x)] def __contains__(self, item): return ref(item) in self._mapping def clean(self): """ Clean dead weak references from the dictionary """ mapping = self._mapping to_drop = [key for key in mapping if key() is None] for key in to_drop: val = mapping.pop(key) val.remove(key) def join(self, a, *args): """ Join given arguments into the same set. Accepts one or more arguments. """ mapping = self._mapping set_a = mapping.setdefault(ref(a), [ref(a)]) for arg in args: set_b = mapping.get(ref(arg)) if set_b is None: set_a.append(ref(arg)) mapping[ref(arg)] = set_a elif set_b is not set_a: if len(set_b) > len(set_a): set_a, set_b = set_b, set_a set_a.extend(set_b) for elem in set_b: mapping[elem] = set_a self.clean() def joined(self, a, b): """ Returns True if *a* and *b* are members of the same set. """ self.clean() mapping = self._mapping try: return mapping[ref(a)] is mapping[ref(b)] except KeyError: return False def remove(self, a): self.clean() mapping = self._mapping seta = mapping.pop(ref(a), None) if seta is not None: seta.remove(ref(a)) def __iter__(self): """ Iterate over each of the disjoint sets as a list. The iterator is invalid if interleaved with calls to join(). """ self.clean() class Token: pass token = Token() # Mark each group as we come across if by appending a token, # and don't yield it twice for group in six.itervalues(self._mapping): if not group[-1] is token: yield [x() for x in group] group.append(token) # Cleanup the tokens for group in six.itervalues(self._mapping): if group[-1] is token: del group[-1] def get_siblings(self, a): """ Returns all of the items joined with *a*, including itself. """ self.clean() siblings = self._mapping.get(ref(a), [ref(a)]) return [x() for x in siblings] def simple_linear_interpolation(a, steps): if steps == 1: return a steps = int(np.floor(steps)) new_length = ((len(a) - 1) * steps) + 1 new_shape = list(a.shape) new_shape[0] = new_length result = np.zeros(new_shape, a.dtype) result[0] = a[0] a0 = a[0:-1] a1 = a[1:] delta = ((a1 - a0) / steps) for i in range(1, steps): result[i::steps] = delta * i + a0 result[steps::steps] = a1 return result def recursive_remove(path): if os.path.isdir(path): for fname in (glob.glob(os.path.join(path, '*')) + glob.glob(os.path.join(path, '.*'))): if os.path.isdir(fname): recursive_remove(fname) os.removedirs(fname) else: os.remove(fname) #os.removedirs(path) else: os.remove(path) def delete_masked_points(*args): """ Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the unmasked points remaining. Arguments can be in any of 5 categories: 1) 1-D masked arrays 2) 1-D ndarrays 3) ndarrays with more than one dimension 4) other non-string iterables 5) anything else The first argument must be in one of the first four categories; any argument with a length differing from that of the first argument (and hence anything in category 5) then will be passed through unchanged. Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite` does not yield a Boolean array. All input arguments that are not passed unchanged are returned as ndarrays after removing the points or rows corresponding to masks in any of the arguments. A vastly simpler version of this function was originally written as a helper for Axes.scatter(). """ if not len(args): return () if (is_string_like(args[0]) or not iterable(args[0])): raise ValueError("First argument must be a sequence") nrecs = len(args[0]) margs = [] seqlist = [False] * len(args) for i, x in enumerate(args): if (not is_string_like(x)) and iterable(x) and len(x) == nrecs: seqlist[i] = True if ma.isMA(x): if x.ndim > 1: raise ValueError("Masked arrays must be 1-D") else: x = np.asarray(x) margs.append(x) masks = [] # list of masks that are True where good for i, x in enumerate(margs): if seqlist[i]: if x.ndim > 1: continue # Don't try to get nan locations unless 1-D. if ma.isMA(x): masks.append(~ma.getmaskarray(x)) # invert the mask xd = x.data else: xd = x try: mask = np.isfinite(xd) if isinstance(mask, np.ndarray): masks.append(mask) except: # Fixme: put in tuple of possible exceptions? pass if len(masks): mask = reduce(np.logical_and, masks) igood = mask.nonzero()[0] if len(igood) < nrecs: for i, x in enumerate(margs): if seqlist[i]: margs[i] = x.take(igood, axis=0) for i, x in enumerate(margs): if seqlist[i] and ma.isMA(x): margs[i] = x.filled() return margs def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None): ''' Returns list of dictionaries of staticists to be use to draw a series of box and whisker plots. See the `Returns` section below to the required keys of the dictionary. Users can skip this function and pass a user- defined set of dictionaries to the new `axes.bxp` method instead of relying on MPL to do the calcs. Parameters ---------- X : array-like Data that will be represented in the boxplots. Should have 2 or fewer dimensions. whis : float, string, or sequence (default = 1.5) As a float, determines the reach of the whiskers past the first and third quartiles (e.g., Q3 + whis*IQR, QR = interquartile range, Q3-Q1). Beyond the whiskers, data are considered outliers and are plotted as individual points. Set this to an unreasonably high value to force the whiskers to show the min and max data. Alternatively, set this to an ascending sequence of percentile (e.g., [5, 95]) to set the whiskers at specific percentiles of the data. Finally, can `whis` be the string 'range' to force the whiskers to the min and max of the data. In the edge case that the 25th and 75th percentiles are equivalent, `whis` will be automatically set to 'range' bootstrap : int or None (default) Number of times the confidence intervals around the median should be bootstrapped (percentile method). labels : sequence Labels for each dataset. Length must be compatible with dimensions of `X` Returns ------- bxpstats : list of dict A list of dictionaries containing the results for each column of data. Keys of each dictionary are the following: ======== =================================== Key Value Description ======== =================================== label tick label for the boxplot mean arithemetic mean value med 50th percentile q1 first quartile (25th percentile) q3 third quartile (75th percentile) cilo lower notch around the median cihi upper notch around the median whislo end of the lower whisker whishi end of the upper whisker fliers outliers ======== =================================== Notes ----- Non-bootstrapping approach to confidence interval uses Gaussian-based asymptotic approximation: .. math:: \mathrm{med} \pm 1.57 \\times \\frac{\mathrm{iqr}}{\sqrt{N}} General approach from: McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of Boxplots", The American Statistician, 32:12-16. ''' def _bootstrap_median(data, N=5000): # determine 95% confidence intervals of the median M = len(data) percentiles = [2.5, 97.5] ii = np.random.randint(M, size=(N, M)) bsData = x[ii] estimate = np.median(bsData, axis=1, overwrite_input=True) CI = np.percentile(estimate, percentiles) return CI def _compute_conf_interval(data, med, iqr, bootstrap): if bootstrap is not None: # Do a bootstrap estimate of notch locations. # get conf. intervals around median CI = _bootstrap_median(data, N=bootstrap) notch_min = CI[0] notch_max = CI[1] else: N = len(data) notch_min = med - 1.57 * iqr / np.sqrt(N) notch_max = med + 1.57 * iqr / np.sqrt(N) return notch_min, notch_max # output is a list of dicts bxpstats = [] # convert X to a list of lists X = _reshape_2D(X) ncols = len(X) if labels is None: labels = repeat(None) elif len(labels) != ncols: raise ValueError("Dimensions of labels and X must be compatible") input_whis = whis for ii, (x, label) in enumerate(zip(X, labels), start=0): # empty dict stats = {} if label is not None: stats['label'] = label # restore whis to the input values in case it got changed in the loop whis = input_whis # note tricksyness, append up here and then mutate below bxpstats.append(stats) # if empty, bail if len(x) == 0: stats['fliers'] = np.array([]) stats['mean'] = np.nan stats['med'] = np.nan stats['q1'] = np.nan stats['q3'] = np.nan stats['cilo'] = np.nan stats['cihi'] = np.nan stats['whislo'] = np.nan stats['whishi'] = np.nan stats['med'] = np.nan continue # up-convert to an array, just to be safe x = np.asarray(x) # arithmetic mean stats['mean'] = np.mean(x) # medians and quartiles q1, med, q3 = np.percentile(x, [25, 50, 75]) # interquartile range stats['iqr'] = q3 - q1 if stats['iqr'] == 0: whis = 'range' # conf. interval around median stats['cilo'], stats['cihi'] = _compute_conf_interval( x, med, stats['iqr'], bootstrap ) # lowest/highest non-outliers if np.isscalar(whis): if np.isreal(whis): loval = q1 - whis * stats['iqr'] hival = q3 + whis * stats['iqr'] elif whis in ['range', 'limit', 'limits', 'min/max']: loval = np.min(x) hival = np.max(x) else: whismsg = ('whis must be a float, valid string, or ' 'list of percentiles') raise ValueError(whismsg) else: loval = np.percentile(x, whis[0]) hival = np.percentile(x, whis[1]) # get high extreme wiskhi = np.compress(x <= hival, x) if len(wiskhi) == 0 or np.max(wiskhi) < q3: stats['whishi'] = q3 else: stats['whishi'] = np.max(wiskhi) # get low extreme wisklo = np.compress(x >= loval, x) if len(wisklo) == 0 or np.min(wisklo) > q1: stats['whislo'] = q1 else: stats['whislo'] = np.min(wisklo) # compute a single array of outliers stats['fliers'] = np.hstack([ np.compress(x < stats['whislo'], x), np.compress(x > stats['whishi'], x) ]) # add in the remaining stats stats['q1'], stats['med'], stats['q3'] = q1, med, q3 return bxpstats # FIXME I don't think this is used anywhere def unmasked_index_ranges(mask, compressed=True): """ Find index ranges where *mask* is *False*. *mask* will be flattened if it is not already 1-D. Returns Nx2 :class:`numpy.ndarray` with each row the start and stop indices for slices of the compressed :class:`numpy.ndarray` corresponding to each of *N* uninterrupted runs of unmasked values. If optional argument *compressed* is *False*, it returns the start and stop indices into the original :class:`numpy.ndarray`, not the compressed :class:`numpy.ndarray`. Returns *None* if there are no unmasked values. Example:: y = ma.array(np.arange(5), mask = [0,0,1,0,0]) ii = unmasked_index_ranges(ma.getmaskarray(y)) # returns array [[0,2,] [2,4,]] y.compressed()[ii[1,0]:ii[1,1]] # returns array [3,4,] ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False) # returns array [[0, 2], [3, 5]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] Prior to the transforms refactoring, this was used to support masked arrays in Line2D. """ mask = mask.reshape(mask.size) m = np.concatenate(((1,), mask, (1,))) indices = np.arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = np.compress(mdif == -1, indices) i1 = np.compress(mdif == 1, indices) assert len(i0) == len(i1) if len(i1) == 0: return None # Maybe this should be np.zeros((0,2), dtype=int) if not compressed: return np.concatenate((i0[:, np.newaxis], i1[:, np.newaxis]), axis=1) seglengths = i1 - i0 breakpoints = np.cumsum(seglengths) ic0 = np.concatenate(((0,), breakpoints[:-1])) ic1 = breakpoints return np.concatenate((ic0[:, np.newaxis], ic1[:, np.newaxis]), axis=1) # a dict to cross-map linestyle arguments _linestyles = [('-', 'solid'), ('--', 'dashed'), ('-.', 'dashdot'), (':', 'dotted')] ls_mapper = dict(_linestyles) # The ls_mapper maps short codes for line style to their full name used # by backends # The reverse mapper is for mapping full names to short ones ls_mapper_r = dict([(ls[1], ls[0]) for ls in _linestyles]) def align_iterators(func, *iterables): """ This generator takes a bunch of iterables that are ordered by func It sends out ordered tuples:: (func(row), [rows from all iterators matching func(row)]) It is used by :func:`matplotlib.mlab.recs_join` to join record arrays """ class myiter: def __init__(self, it): self.it = it self.key = self.value = None self.iternext() def iternext(self): try: self.value = next(self.it) self.key = func(self.value) except StopIteration: self.value = self.key = None def __call__(self, key): retval = None if key == self.key: retval = self.value self.iternext() elif self.key and key > self.key: raise ValueError("Iterator has been left behind") return retval # This can be made more efficient by not computing the minimum key for each # iteration iters = [myiter(it) for it in iterables] minvals = minkey = True while 1: minvals = ([_f for _f in [it.key for it in iters] if _f]) if minvals: minkey = min(minvals) yield (minkey, [it(minkey) for it in iters]) else: break def is_math_text(s): # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. try: s = six.text_type(s) except UnicodeDecodeError: raise ValueError( "matplotlib display text must have all code points < 128 or use " "Unicode strings") dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) return even_dollars def _check_1d(x): ''' Converts a sequence of less than 1 dimension, to an array of 1 dimension; leaves everything else untouched. ''' if not hasattr(x, 'shape') or len(x.shape) < 1: return np.atleast_1d(x) else: try: x[:, None] return x except (IndexError, TypeError): return np.atleast_1d(x) def _reshape_2D(X): """ Converts a non-empty list or an ndarray of two or fewer dimensions into a list of iterable objects so that in for v in _reshape_2D(X): v is iterable and can be used to instantiate a 1D array. """ if hasattr(X, 'shape'): # one item if len(X.shape) == 1: if hasattr(X[0], 'shape'): X = list(X) else: X = [X, ] # several items elif len(X.shape) == 2: nrows, ncols = X.shape if nrows == 1: X = [X] elif ncols == 1: X = [X.ravel()] else: X = [X[:, i] for i in xrange(ncols)] else: raise ValueError("input `X` must have 2 or fewer dimensions") if not hasattr(X[0], '__len__'): X = [X] else: X = [np.ravel(x) for x in X] return X def violin_stats(X, method, points=100): ''' Returns a list of dictionaries of data which can be used to draw a series of violin plots. See the `Returns` section below to view the required keys of the dictionary. Users can skip this function and pass a user-defined set of dictionaries to the `axes.vplot` method instead of using MPL to do the calculations. Parameters ---------- X : array-like Sample data that will be used to produce the gaussian kernel density estimates. Must have 2 or fewer dimensions. method : callable The method used to calculate the kernel density estimate for each column of data. When called via `method(v, coords)`, it should return a vector of the values of the KDE evaluated at the values specified in coords. points : scalar, default = 100 Defines the number of points to evaluate each of the gaussian kernel density estimates at. Returns ------- A list of dictionaries containing the results for each column of data. The dictionaries contain at least the following: - coords: A list of scalars containing the coordinates this particular kernel density estimate was evaluated at. - vals: A list of scalars containing the values of the kernel density estimate at each of the coordinates given in `coords`. - mean: The mean value for this column of data. - median: The median value for this column of data. - min: The minimum value for this column of data. - max: The maximum value for this column of data. ''' # List of dictionaries describing each of the violins. vpstats = [] # Want X to be a list of data sequences X = _reshape_2D(X) for x in X: # Dictionary of results for this distribution stats = {} # Calculate basic stats for the distribution min_val = np.min(x) max_val = np.max(x) # Evaluate the kernel density estimate coords = np.linspace(min_val, max_val, points) stats['vals'] = method(x, coords) stats['coords'] = coords # Store additional statistics for this distribution stats['mean'] = np.mean(x) stats['median'] = np.median(x) stats['min'] = min_val stats['max'] = max_val # Append to output vpstats.append(stats) return vpstats class _NestedClassGetter(object): # recipe from http://stackoverflow.com/a/11493777/741316 """ When called with the containing class as the first argument, and the name of the nested class as the second argument, returns an instance of the nested class. """ def __call__(self, containing_class, class_name): nested_class = getattr(containing_class, class_name) # make an instance of a simple object (this one will do), for which we # can change the __class__ later on. nested_instance = _NestedClassGetter() # set the class of the instance, the __init__ will never be called on # the class but the original state will be set later on by pickle. nested_instance.__class__ = nested_class return nested_instance class _InstanceMethodPickler(object): """ Pickle cannot handle instancemethod saving. _InstanceMethodPickler provides a solution to this. """ def __init__(self, instancemethod): """Takes an instancemethod as its only argument.""" if six.PY3: self.parent_obj = instancemethod.__self__ self.instancemethod_name = instancemethod.__func__.__name__ else: self.parent_obj = instancemethod.im_self self.instancemethod_name = instancemethod.im_func.__name__ def get_instancemethod(self): return getattr(self.parent_obj, self.instancemethod_name) def _step_validation(x, *args): """ Helper function of `pts_to_*step` functions This function does all of the normalization required to the input and generate the template for output """ args = tuple(np.asanyarray(y) for y in args) x = np.asanyarray(x) if x.ndim != 1: raise ValueError("x must be 1 dimenional") if len(args) == 0: raise ValueError("At least one Y value must be passed") return np.vstack((x, ) + args) def pts_to_prestep(x, *args): """ Covert continuous line to pre-steps Given a set of N points convert to 2 N -1 points which when connected linearly give a step function which changes values at the begining the intervals. Parameters ---------- x : array The x location of the steps y1, y2, ... : array Any number of y arrays to be turned into steps. All must be the same length as ``x`` Returns ------- x, y1, y2, .. : array The x and y values converted to steps in the same order as the input. If the input is length ``N``, each of these arrays will be length ``2N + 1`` Examples -------- >> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2) """ # do normalization vertices = _step_validation(x, *args) # create the output array steps = np.zeros((vertices.shape[0], 2 * len(x) - 1), np.float) # do the to step conversion logic steps[0, 0::2], steps[0, 1::2] = vertices[0, :], vertices[0, :-1] steps[1:, 0::2], steps[1:, 1:-1:2] = vertices[1:, :], vertices[1:, 1:] # convert 2D array back to tuple return tuple(steps) def pts_to_poststep(x, *args): """ Covert continuous line to pre-steps Given a set of N points convert to 2 N -1 points which when connected linearly give a step function which changes values at the begining the intervals. Parameters ---------- x : array The x location of the steps y1, y2, ... : array Any number of y arrays to be turned into steps. All must be the same length as ``x`` Returns ------- x, y1, y2, .. : array The x and y values converted to steps in the same order as the input. If the input is length ``N``, each of these arrays will be length ``2N + 1`` Examples -------- >> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2) """ # do normalization vertices = _step_validation(x, *args) # create the output array steps = ma.zeros((vertices.shape[0], 2 * len(x) - 1), np.float) # do the to step conversion logic steps[0, ::2], steps[0, 1:-1:2] = vertices[0, :], vertices[0, 1:] steps[1:, 0::2], steps[1:, 1::2] = vertices[1:, :], vertices[1:, :-1] # convert 2D array back to tuple return tuple(steps) def pts_to_midstep(x, *args): """ Covert continuous line to pre-steps Given a set of N points convert to 2 N -1 points which when connected linearly give a step function which changes values at the begining the intervals. Parameters ---------- x : array The x location of the steps y1, y2, ... : array Any number of y arrays to be turned into steps. All must be the same length as ``x`` Returns ------- x, y1, y2, .. : array The x and y values converted to steps in the same order as the input. If the input is length ``N``, each of these arrays will be length ``2N + 1`` Examples -------- >> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2) """ # do normalization vertices = _step_validation(x, *args) # create the output array steps = ma.zeros((vertices.shape[0], 2 * len(x)), np.float) steps[0, 1:-1:2] = 0.5 * (vertices[0, :-1] + vertices[0, 1:]) steps[0, 2::2] = 0.5 * (vertices[0, :-1] + vertices[0, 1:]) steps[0, 0] = vertices[0, 0] steps[0, -1] = vertices[0, -1] steps[1:, 0::2], steps[1:, 1::2] = vertices[1:, :], vertices[1:, :] # convert 2D array back to tuple return tuple(steps) STEP_LOOKUP_MAP = {'pre': pts_to_prestep, 'post': pts_to_poststep, 'mid': pts_to_midstep, 'step-pre': pts_to_prestep, 'step-post': pts_to_poststep, 'step-mid': pts_to_midstep} def index_of(y): """ A helper function to get the index of an input to plot against if x values are not explicitly given. Tries to get `y.index` (works if this is a pd.Series), if that fails, return np.arange(y.shape[0]). This will be extended in the future to deal with more types of labeled data. Parameters ---------- y : scalar or array-like The proposed y-value Returns ------- x, y : ndarray The x and y values to plot. """ try: return y.index.values, y.values except AttributeError: y = np.atleast_1d(y) return np.arange(y.shape[0], dtype=float), y def safe_first_element(obj): if isinstance(obj, collections.Iterator): raise RuntimeError("matplotlib does not support generators " "as input") return next(iter(obj)) def get_label(y, default_name): try: return y.name except AttributeError: return default_name # Numpy > 1.6.x deprecates putmask in favor of the new copyto. # So long as we support versions 1.6.x and less, we need the # following local version of putmask. We choose to make a # local version of putmask rather than of copyto because the # latter includes more functionality than the former. Therefore # it is easy to make a local version that gives full putmask # behavior, but duplicating the full copyto behavior would be # more difficult. try: np.copyto except AttributeError: _putmask = np.putmask else: def _putmask(a, mask, values): return np.copyto(a, values, where=mask)