""" This module provides a large set of colormaps, functions for registering new colormaps and for getting a colormap by name, and a mixin class for adding color mapping functionality. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import os import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import datad from matplotlib._cm import cubehelix from matplotlib._cm_listed import cmaps as cmaps_listed cmap_d = dict() # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def _reverser(f): def freversed(x): return f(1 - x) return freversed def revcmap(data): """Can only handle specification *data* in dictionary format.""" data_r = {} for key, val in six.iteritems(data): if six.callable(val): valnew = _reverser(val) # This doesn't work: lambda x: val(1-x) # The same "val" (the first one) is used # each time, so the colors are identical # and the result is shades of gray. else: # Flip x and exchange the y values facing x = 0 and x = 1. valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] data_r[key] = valnew return data_r def _reverse_cmap_spec(spec): """Reverses cmap specification *spec*, can handle both dict and tuple type specs.""" if 'red' in spec: return revcmap(spec) else: revspec = list(reversed(spec)) if len(revspec[0]) == 2: # e.g., (1, (1.0, 0.0, 1.0)) revspec = [(1.0 - a, b) for a, b in revspec] return revspec def _generate_cmap(name, lutsize): """Generates the requested cmap from it's name *name*. The lut size is *lutsize*.""" spec = datad[name] # Generate the colormap object. if 'red' in spec: return colors.LinearSegmentedColormap(name, spec, lutsize) else: return colors.LinearSegmentedColormap.from_list(name, spec, lutsize) LUTSIZE = mpl.rcParams['image.lut'] # Generate the reversed specifications ... for cmapname in list(six.iterkeys(datad)): spec = datad[cmapname] spec_reversed = _reverse_cmap_spec(spec) datad[cmapname + '_r'] = spec_reversed # Precache the cmaps with ``lutsize = LUTSIZE`` ... # Use datad.keys() to also add the reversed ones added in the section above: for cmapname in six.iterkeys(datad): cmap_d[cmapname] = _generate_cmap(cmapname, LUTSIZE) cmap_d.update(cmaps_listed) locals().update(cmap_d) # Continue with definitions ... def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not cbook.is_string_like(name): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(sorted(cmap_d.keys())))) class ScalarMappable(object): """ This is a mixin class to support scalar data to RGBA mapping. The ScalarMappable makes use of data normalization before returning RGBA colors from the given colormap. """ def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False} def to_rgba(self, x, alpha=None, bytes=False): """ Return a normalized rgba array corresponding to *x*. In the normal case, *x* is a 1-D or 2-D sequence of scalars, and the corresponding ndarray of rgba values will be returned, based on the norm and colormap set for this ScalarMappable. There is one special case, for handling images that are already rgb or rgba, such as might have been read from an image file. If *x* is an ndarray with 3 dimensions, and the last dimension is either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. If the last dimension is 3, the *alpha* kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the *alpha* kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if the third dimension is other than 3 or 4. In either case, if *bytes* is *False* (default), the rgba array will be floats in the 0-1 range; if it is *True*, the returned rgba array will be uint8 in the 0 to 255 range. Note: this method assumes the input is well-behaved; it does not check for anomalies such as *x* being a masked rgba array, or being an integer type other than uint8, or being a floating point rgba array with values outside the 0-1 range. """ # First check for special case, image input: try: if x.ndim == 3: if x.shape[2] == 3: if alpha is None: alpha = 1 if x.dtype == np.uint8: alpha = np.uint8(alpha * 255) m, n = x.shape[:2] xx = np.empty(shape=(m, n, 4), dtype=x.dtype) xx[:, :, :3] = x xx[:, :, 3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) if not bytes and xx.dtype == np.uint8: xx = xx.astype(float) / 255 return xx except AttributeError: # e.g., x is not an ndarray; so try mapping it pass # This is the normal case, mapping a scalar array: x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin) == 2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap or registered colormap name """ cmap = get_cmap(cmap) self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True