import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset import numpy as np def get_demo_image(): from matplotlib.cbook import get_sample_data import numpy as np f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False) z = np.load(f) # z is a numpy array of 15x15 return z, (-3, 4, -4, 3) fig, ax = plt.subplots(figsize=[5, 4]) # prepare the demo image Z, extent = get_demo_image() Z2 = np.zeros([150, 150], dtype="d") ny, nx = Z.shape Z2[30:30 + ny, 30:30 + nx] = Z # extent = [-3, 4, -4, 3] ax.imshow(Z2, extent=extent, interpolation="nearest", origin="lower") axins = zoomed_inset_axes(ax, 6, loc=1) # zoom = 6 axins.imshow(Z2, extent=extent, interpolation="nearest", origin="lower") # sub region of the original image x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9 axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) plt.xticks(visible=False) plt.yticks(visible=False) # draw a bbox of the region of the inset axes in the parent axes and # connecting lines between the bbox and the inset axes area mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") plt.draw() plt.show()