""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()