# Author: Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from ..feature_selection.from_model import _LearntSelectorMixin class Perceptron(BaseSGDClassifier, _LearntSelectorMixin): """Perceptron Read more in the :ref:`User Guide `. Parameters ---------- penalty : None, 'l2' or 'l1' or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to None. alpha : float Constant that multiplies the regularization term if regularization is used. Defaults to 0.0001 fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, optional, default True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. eta0 : double Constant by which the updates are multiplied. Defaults to 1. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- `Perceptron` and `SGDClassifier` share the same underlying implementation. In fact, `Perceptron()` is equivalent to `SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)`. See also -------- SGDClassifier References ---------- http://en.wikipedia.org/wiki/Perceptron and references therein. """ def __init__(self, penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False): super(Perceptron, self).__init__(loss="perceptron", penalty=penalty, alpha=alpha, l1_ratio=0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, learning_rate="constant", eta0=eta0, power_t=0.5, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs)