/* $Id$ Part of CLP(Q) (Constraint Logic Programming over Rationals) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09 Copyright (C): 2006, K.U. Leuven and 1992-1995, Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria This software is based on CLP(Q,R) by Christian Holzbaur for SICStus Prolog and distributed under the license details below with permission from all mentioned authors. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(ordering, [ combine/3, ordering/1, arrangement/2 ]). :- use_module(class, [ class_get_clp/2, class_get_prio/2, class_put_prio/2 ]). :- use_module(itf, [ clp_type/2 ]). :- use_module(library(ugraphs), [ add_edges/3, add_vertices/3, top_sort/2, ugraph_union/3 ]). :- use_module(library(lists), [ append/3 ]). ordering(X) :- var(X), !, fail. ordering(A>B) :- !, ordering(B clp_type(X,CLP), ( CLP = clpr -> bv_r:var_intern(X,Class) ; bv_q:var_intern(X,Class) ) ; true ), join_class(Xs,Class). % combine(Ga,Gb,Gc) % % Combines the vertices of Ga and Gb into Gc. combine(Ga,Gb,Gc) :- normalize(Ga,Gan), normalize(Gb,Gbn), ugraph_union(Gan,Gbn,Gc). % % both Ga and Gb might have their internal ordering invalidated % because of bindings and aliasings % normalize([],[]) :- !. normalize(G,Gsgn) :- G = [_|_], keysort(G,Gs), % sort vertices on key group(Gs,Gsg), % concatenate vertices with the same key normalize_vertices(Gsg,Gsgn). % normalize normalize_vertices([],[]). normalize_vertices([X-Xnb|Xs],Res) :- ( normalize_vertex(X,Xnb,Xnorm) -> Res = [Xnorm|Xsn], normalize_vertices(Xs,Xsn) ; normalize_vertices(Xs,Res) ). % normalize_vertex(X,Nbs,X-Nbss) % % Normalizes a vertex X-Nbs into X-Nbss by sorting Nbs, removing duplicates (also of X) % and removing non-vars. normalize_vertex(X,Nbs,X-Nbsss) :- var(X), sort(Nbs,Nbss), strip_nonvar(Nbss,X,Nbsss). % strip_nonvar(Nbs,X,Res) % % Turns vertext X-Nbs into X-Res by removing occurrences of X from Nbs and removing % non-vars. This to normalize after bindings have occurred. See also normalize_vertex/3. strip_nonvar([],_,[]). strip_nonvar([X|Xs],Y,Res) :- ( X==Y % duplicate of Y -> strip_nonvar(Xs,Y,Res) ; var(X) % var: keep -> Res = [X|Stripped], strip_nonvar(Xs,Y,Stripped) ; % nonvar: remove nonvar(X), Res = [] % because Vars []. gen_edges([X|Xs]) --> gen_edges(Xs,X), gen_edges(Xs). gen_edges([],_) --> []. gen_edges([Y|Ys],X) --> [X-Y], gen_edges(Ys,X). % group(Vert,Res) % % Concatenates vertices with the same key. group([],[]). group([K-Kl|Ks],Res) :- group(Ks,K,Kl,Res). group([],K,Kl,[K-Kl]). group([L-Ll|Ls],K,Kl,Res) :- ( K==L -> append(Kl,Ll,KLl), group(Ls,K,KLl,Res) ; Res = [K-Kl|Tail], group(Ls,L,Ll,Tail) ).