/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (C): 1985-2015, University of Amsterdam VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(error, [ type_error/2, % +Type, +Term domain_error/2, % +Domain, +Term existence_error/2, % +Type, +Term permission_error/3, % +Action, +Type, +Term instantiation_error/1, % +Term uninstantiation_error/1, % +Term representation_error/1, % +Reason syntax_error/1, % +Culprit must_be/2, % +Type, +Term is_of_type/2 % +Type, +Term ]). :- set_prolog_flag(generate_debug_info, false). /** Error generating support This module provides predicates to simplify error generation and checking. It's implementation is based on a discussion on the SWI-Prolog mailinglist on best practices in error handling. The utility predicate must_be/2 provides simple run-time type validation. The *_error predicates are simple wrappers around throw/1 to simplify throwing the most common ISO error terms. @author Jan Wielemaker @author Richard O'Keefe @author Ulrich Neumerkel @see library(debug) and library(prolog_stack). @see print_message/2 is used to print (uncaught) error terms. */ :- multifile has_type/2. /******************************* * ISO ERRORS * *******************************/ %% type_error(+Type, +Term). % % Tell the user that Term is not of the expected Type. This error % is closely related to domain_error/2 because the notion of types % is not really set in stone in Prolog. We introduce the % difference using a simple example. % % Suppose an argument must be a non-negative integer. If the % actual argument is not an integer, this is a _type_error_. If it % is a negative integer, it is a _domain_error_. % % Typical borderline cases are predicates accepting a compound % term, e.g., point(X,Y). One could argument that the basic type % is a compound-term and any other compound term is a domain % error. Most Prolog programmers consider each compound as a type % and would consider a compoint that is not point(_,_) a % _type_error_. type_error(Type, Term) :- throw(error(type_error(Type, Term), _)). %% domain_error(+Type, +Term). % % The argument is of the proper type, but has a value that is % outside the supported values. See type_error/2 for a more % elaborate discussion of the distinction between type- and % domain-errors. domain_error(Type, Term) :- throw(error(domain_error(Type, Term), _)). %% existence_error(+Type, +Term). % % Term is of the correct type and correct domain, but there is no % existing (external) resource that is represented by it. existence_error(Type, Term) :- throw(error(existence_error(Type, Term), _)). %% permission_error(+Action, +Type, +Term). % % It is not allowed to perform Action on the object Term that is % of the given Type. permission_error(Action, Type, Term) :- throw(error(permission_error(Action, Type, Term), _)). %% instantiation_error(+Term). % % An argument is under-instantiated. I.e. it is not acceptable as % it is, but if some variables are bound to appropriate values it % would be acceptable. % % @param Term is the term that needs (further) instantiation. % Unfortunately, the ISO error does not allow for passing % this term along with the error, but we pass it to this % predicate for documentation purposes and to allow for % future enhancement. instantiation_error(_Term) :- throw(error(instantiation_error, _)). %% uninstantiation_error(+Term) % % An argument is over-instantiated. This error is used for output % arguments whose value cannot be known upfront. For example, the % goal open(File, read, input) cannot succeed because the system % will allocate a new unique stream handle that will never unify % with `input`. uninstantiation_error(Term) :- throw(error(uninstantiation_error(Term), _)). %% representation_error(+Reason). % % A representation error indicates a limitation of the % implementation. SWI-Prolog has no such limits that are not % covered by other errors, but an example of a representation % error in another Prolog implementation could be an attempt to % create a term with an arity higher than supported by the system. representation_error(Reason) :- throw(error(representation_error(Reason), _)). %% syntax_error(+Culprit) % % A text has invalid syntax. The error is described by Culprit. % % @tbd Deal with proper description of the location of the % error. For short texts, we allow for Type(Text), meaning % Text is not a valid Type. E.g. syntax_error(number('1a')) % means that =1a= is not a valid number. syntax_error(Culprit) :- throw(error(syntax_error(Culprit), _)). /******************************* * MUST-BE * *******************************/ %% must_be(+Type, @Term) is det. % % True if Term satisfies the type constraints for Type. Defined % types are =atom=, =atomic=, =between=, =boolean=, =callable=, % =chars=, =codes=, =text=, =compound=, =constant=, =float=, % =integer=, =nonneg=, =positive_integer=, =negative_integer=, % =nonvar=, =number=, =oneof=, =list=, =list_or_partial_list=, % =symbol=, =var=, =rational=, =encoding=, =dict= and =string=. % % Most of these types are defined by an arity-1 built-in predicate % of the same name. Below is a brief definition of the other % types. % % | boolean | one of =true= or =false= | % | chars | Proper list of 1-character atoms | % | codes | Proper list of Unicode character codes | % | text | One of =atom=, =string=, =chars= or =codes= | % | between(L,U) | Number between L and U (including L and U) | % | nonneg | Integer >= 0 | % | positive_integer | Integer > 0 | % | negative_integer | Integer < 0 | % | oneof(L) | Ground term that is member of L | % | encoding | Valid name for a character encoding | % | cyclic | Cyclic term (rational tree) | % | acyclic | Acyclic term (tree) | % | list(Type) | Proper list with elements of Type | % | list_or_partial_list | A list or an open list (ending in a variable | % % @throws instantiation_error if Term is insufficiently % instantiated and type_error(Type, Term) if Term is not of Type. must_be(Type, X) :- ( has_type(Type, X) -> true ; is_not(Type, X) ). %% is_not(+Type, @Term) % % Throws appropriate error. It is _known_ that Term is not of type % Type. % % @throws type_error(Type, Term) % @throws instantiation_error is_not(list, X) :- !, not_a_list(list, X). is_not(list(Of), X) :- !, not_a_list(list(Of), X). is_not(list_or_partial_list, X) :- !, type_error(list, X). is_not(chars, X) :- !, not_a_list(chars, X). is_not(codes, X) :- !, not_a_list(codes, X). is_not(var,X) :- !, throw(error(uninstantiation_error(X), _)). is_not(rational, X) :- !, not_a_rational(X). is_not(cyclic, X) :- domain_error(cyclic_term, X). is_not(acyclic, X) :- domain_error(acyclic_term, X). is_not(Type, X) :- ( var(X) -> instantiation_error(X) ; ground_type(Type), \+ ground(X) -> instantiation_error(X) ; type_error(Type, X) ). ground_type(ground). ground_type(oneof(_)). ground_type(stream). ground_type(text). ground_type(string). not_a_list(Type, X) :- '$skip_list'(_, X, Rest), ( var(Rest) -> instantiation_error(X) ; Rest == [] -> Type = list(Of), element_is_not(X, Of) ; functor(Type, Name, _), type_error(Name, X) ). element_is_not([H|T], Of) :- has_type(Of, H), !, element_is_not(T, Of). element_is_not([H|_], Of) :- !, is_not(Of, H). element_is_not(_List, _Of) :- assertion(fail). not_a_rational(X) :- ( var(X) -> instantiation_error(X) ; X = rdiv(N,D) -> must_be(integer, N), must_be(integer, D), type_error(rational,X) ; type_error(rational,X) ). %% is_of_type(+Type, @Term) is semidet. % % True if Term satisfies Type. is_of_type(Type, Term) :- has_type(Type, Term). %% has_type(+Type, @Term) is semidet. % % True if Term satisfies Type. has_type(impossible, _) :- instantiation_error(_). has_type(any, _). has_type(atom, X) :- atom(X). has_type(atomic, X) :- atomic(X). has_type(between(L,U), X) :- ( integer(L) -> integer(X), between(L,U,X) ; number(X), X >= L, X =< U ). has_type(boolean, X) :- (X==true;X==false), !. has_type(callable, X) :- callable(X). has_type(chars, X) :- chars(X). has_type(codes, X) :- codes(X). has_type(text, X) :- text(X). has_type(compound, X) :- compound(X). has_type(constant, X) :- atomic(X). has_type(float, X) :- float(X). has_type(ground, X) :- ground(X). has_type(cyclic, X) :- cyclic_term(X). has_type(acyclic, X) :- acyclic_term(X). has_type(integer, X) :- integer(X). has_type(nonneg, X) :- integer(X), X >= 0. has_type(positive_integer, X) :- integer(X), X > 0. has_type(negative_integer, X) :- integer(X), X < 0. has_type(nonvar, X) :- nonvar(X). has_type(number, X) :- number(X). has_type(oneof(L), X) :- ground(X), \+ \+ memberchk(X, L). has_type(proper_list, X) :- is_list(X). has_type(list, X) :- is_list(X). has_type(list_or_partial_list, X) :- is_list_or_partial_list(X). has_type(symbol, X) :- atom(X). has_type(var, X) :- var(X). has_type(rational, X) :- rational(X). has_type(string, X) :- string(X). has_type(stream, X) :- is_stream(X). has_type(encoding, X) :- current_encoding(X). has_type(dict, X) :- is_dict(X). has_type(list(Type), X) :- is_list(X), element_types(X, Type). chars(Chs) :- is_list(Chs), chars_i(Chs). chars_i([]). chars_i([H|T]) :- atom(H), atom_length(H, 1), chars_i(T). codes(Cds) :- is_list(Cds), codes_i(Cds). codes_i([]). codes_i([H|T]) :- integer(H), between(1, 0x10ffff, H), codes_i(T). text(X) :- ( atom(X) ; string(X) ; chars(X) ; codes(X) ), !. element_types([], _). element_types([H|T], Type) :- has_type(Type, H), element_types(T, Type). is_list_or_partial_list(L0) :- '$skip_list'(_, L0,L), ( var(L) -> true ; L == [] ). %% current_encoding(?Name) is nondet. % % True if Name is the name of a supported encoding. See encoding % option of e.g., open/4. current_encoding(octet). current_encoding(ascii). current_encoding(iso_latin_1). current_encoding(text). current_encoding(utf8). current_encoding(unicode_be). current_encoding(unicode_le). current_encoding(wchar_t).