/* Part of SWI-Prolog Author: Jan Wielemaker, Michiel Hildebrand E-mail: J.Wielemaker@uva.nl WWW: http://www.swi-prolog.org Copyright (C): 2007-2013, University of Amsterdam VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(javascript, [ js_script//1, % +Content js_call//1, % +Function(Arg..) js_new//2, % +Id, +Function(+Args) js_expression//1, % +Expression js_arg_list//1, % +ListOfExpressions js_arg//1, % +Arg js_args//1, % +Args javascript/4 % Quasi Quotation handler ]). :- use_module(library(http/html_write)). :- use_module(library(http/json)). :- use_module(library(apply)). :- use_module(library(error)). :- use_module(library(lists)). :- use_module(library(debug)). :- use_module(library(quasi_quotations)). :- use_module(library(dcg/basics)). :- use_module(js_grammar). :- html_meta js_script(html, ?, ?). :- quasi_quotation_syntax(javascript). /** Utilities for including JavaScript This library is a supplement to library(http/html_write) for producing JavaScript fragments. Its main role is to be able to call JavaScript functions with valid arguments constructed from Prolog data. For example, suppose you want to call a JavaScript functions to process a list of names represented as Prolog atoms. This can be done using the call below, while without this library you would have to be careful to properly escape special characters. == numbers_script(Names) --> html(script(type('text/javascript'), [ \js_call('ProcessNumbers'(Names) ]), == The accepted arguments are described with js_expression//1. */ %% js_script(+Content)// is det. % % Generate a JavaScript =script= element with the given content. js_script(Content) --> html(script(type('text/javascript'), Content)). /******************************* * QUASI QUOTATION * *******************************/ %% javascript(+Content, +Vars, +VarDict, -DOM) is det. % % Quasi quotation parser for JavaScript that allows for embedding % Prolog variables to substitude _identifiers_ in the JavaScript % snippet. Parameterizing a JavaScript string is achieved using % the JavaScript `+` operator, which results in concatenation at % the client side. % % == % ..., % js_script({|javascript(Id, Config)|| % $(document).ready(function() { % $("#"+Id).tagit(Config); % }); % |}), % ... % == % % The current implementation tokenizes the JavaScript input and % yields syntax errors on unterminated comments, strings, etc. No % further parsing is implemented, which makes it possible to % produce syntactically incorrect and partial JavaScript. Future % versions are likely to include a full parser, generating syntax % errors. % % The parser produces a term `\List`, which is suitable for % js_script//1 and html//1. Embedded variables are mapped to % `\js_expression(Var)`, while the remaining text is mapped to % atoms. % % @tbd Implement a full JavaScript parser. Users should _not_ % rely on the ability to generate partial JavaScript % snippets. javascript(Content, Vars, Dict, \Parts) :- include(qq_var(Vars), Dict, QQDict), phrase_from_quasi_quotation( js(QQDict, Parts), Content). qq_var(Vars, _=Var) :- member(V, Vars), V == Var, !. js(Dict, [Pre, Subst|More]) --> here(Here0), js_tokens(_), here(Here1), js_token(identifier(Name)), { memberchk(Name=Var, Dict), !, Subst = \js_expression(Var), diff_to_atom(Here0, Here1, Pre) }, js(Dict, More). js(_, [Last]) --> string(Codes), \+ [_], !, { atom_codes(Last, Codes) }. js_tokens([]) --> []. js_tokens([H|T]) --> js_token(H), js_tokens(T). % diff_to_atom(+Start, +End, -Atom) % % True when Atom is an atom that represents the characters between % Start and End, where End must be in the tail of the list Start. diff_to_atom(Start, End, Atom) :- diff_list(Start, End, List), atom_codes(Atom, List). diff_list(Start, End, List) :- Start == End, !, List = []. diff_list([H|Start], End, [H|List]) :- diff_list(Start, End, List). here(Here, Here, Here). /******************************* * PROLOG --> JAVASCRIPT * *******************************/ %% js_call(+Term)// is det. % % Emit a call to a Javascript function. The Prolog functor is the % name of the function. The arguments are converted from Prolog to % JavaScript using js_arg_list//1. Please not that Prolog functors can % be quoted atom and thus the following is legal: % % == % ... % html(script(type('text/javascript'), % [ \js_call('x.y.z'(hello, 42) % ]), % == js_call(Term) --> { Term =.. [Function|Args] }, html(Function), js_arg_list(Args), [';\n']. %% js_new(+Id, +Term)// is det. % % Emit a call to a Javascript object declaration. This is the same % as: % % == % ['var ', Id, ' = new ', \js_call(Term)] % == js_new(Id, Term) --> { Term =.. [Function|Args] }, html(['var ', Id, ' = new ', Function]), js_arg_list(Args), [';\n']. %% js_arg_list(+Expressions:list)// is det. % % Write javascript (function) arguments. This writes "(", Arg, % ..., ")". See js_expression//1 for valid argument values. js_arg_list(Args) --> ['('], js_args(Args), [')']. js_args([]) --> []. js_args([H|T]) --> js_expression(H), ( { T == [] } -> [] ; html(', '), js_args(T) ). %% js_expression(+Expression)// is det. % % Emit a single JSON argument. Expression is one of: % % $ Variable : % Emitted as Javascript =null= % $ List : % Produces a Javascript list, where each element is processed % by this library. % $ object(Attributes) : % Where Attributes is a Key-Value list where each pair can be % written as Key-Value, Key=Value or Key(Value), accomodating % all common constructs for this used in Prolog. % $ { K:V, ... } % Same as object(Attributes), providing a more JavaScript-like % syntax. This may be useful if the object appears literally % in the source-code, but is generally less friendlyto produce % as a result from a computation. % $ Dict : % Emit a dict as a JSON object using json_write_dict/3. % $ json(Term) : % Emits a term using json_write/3. % $ @(Atom) : % Emits these constants without quotes. Normally used for the % symbols =true=, =false= and =null=, but can also be use for % emitting JavaScript symbols (i.e. function- or variable % names). % $ Number : % Emited literally % $ symbol(Atom) : % Synonym for @(Atom). Deprecated. % $ Atom or String : % Emitted as quoted JavaScript string. js_expression(Expr) --> js_arg(Expr), !. js_expression(Expr) --> { type_error(js(expression), Expr) }. %% js_arg(+Expression)// is semidet. % % Same as js_expression//1, but fails if Expression is invalid, % where js_expression//1 raises an error. % % @deprecated New code should use js_expression//1. js_arg(H) --> { var(H) }, !, [null]. js_arg(object(H)) --> { is_list(H) }, !, html([ '{', \js_kv_list(H), '}' ]). js_arg({}(Attrs)) --> !, html([ '{', \js_kv_cslist(Attrs), '}' ]). js_arg(@(Id)) --> js_identifier(Id). js_arg(symbol(Id)) --> js_identifier(Id). js_arg(json(Term)) --> { json_to_string(json(Term), String), debug(json_arg, '~w~n', String) }, [ String ]. js_arg(Dict) --> { is_dict(Dict), !, with_output_to(string(String), json_write_dict(current_output, Dict, [width(0)])) }, [ String ]. js_arg(H) --> { is_list(H) }, !, html([ '[', \js_args(H), ']' ]). js_arg(H) --> { number(H) }, !, [H]. js_arg(H) --> { atomic(H), !, js_quoted_string(H, Q) }, [ '"', Q, '"' ]. js_kv_list([]) --> []. js_kv_list([H|T]) --> ( js_kv(H) -> ( { T == [] } -> [] ; html(', '), js_kv_list(T) ) ; { type_error(javascript_key_value, H) } ). js_kv(Key:Value) --> !, js_key(Key), [:], js_expression(Value). js_kv(Key-Value) --> !, js_key(Key), [:], js_expression(Value). js_kv(Key=Value) --> !, js_key(Key), [:], js_expression(Value). js_kv(Term) --> { compound(Term), Term =.. [Key,Value] }, !, js_key(Key), [:], js_expression(Value). js_key(Key) --> ( { must_be(atom, Key), js_identifier(Key) } -> [Key] ; { js_quoted_string(Key, QKey) }, html(['\'', QKey, '\'']) ). js_kv_cslist((A,B)) --> !, js_kv(A), html(', '), js_kv_cslist(B). js_kv_cslist(A) --> js_kv(A). %% js_quoted_string(+Raw, -Quoted) % % Quote text for use in JavaScript. Quoted does _not_ include the % leading and trailing quotes. % % @tbd Join with json stuff. js_quoted_string(Raw, Quoted) :- atom_codes(Raw, Codes), phrase(js_quote_codes(Codes), QuotedCodes), atom_codes(Quoted, QuotedCodes). js_quote_codes([]) --> []. js_quote_codes([0'\r,0'\n|T]) --> !, "\\n", js_quote_codes(T). js_quote_codes([0'<,0'/|T]) --> !, % Avoid XSS scripting hacks "<\\/", js_quote_codes(T). js_quote_codes([H|T]) --> js_quote_code(H), js_quote_codes(T). js_quote_code(0'') --> !, "\\'". js_quote_code(0'") --> !, "\\\"". js_quote_code(0'\\) --> !, "\\\\". js_quote_code(0'\n) --> !, "\\n". js_quote_code(0'\r) --> !, "\\r". js_quote_code(0'\t) --> !, "\\t". js_quote_code(C) --> [C]. %% js_identifier(+Id:atom)// is det. % % Emit an identifier if it is a valid one js_identifier(Id) --> { must_be(atom, Id), js_identifier(Id) }, !, [ Id ]. js_identifier(Id) --> { domain_error(js(identifier), Id) }. %% js_identifier(+Id:atom) is semidet. % % True if Id is a valid identifier. In traditional JavaScript, % this means it starts with [$_:letter:] and is followed by % [$_:letter:digit:] js_identifier(Id) :- sub_atom(Id, 0, 1, _, First), char_type(First, csymf), forall(sub_atom(Id, _, 1, _, Char), char_type(Char, csym)). %% json_to_string(+JSONTerm, -String) % % Write JSONTerm to String. json_to_string(JSON, String) :- with_output_to(string(String), json_write(current_output,JSON,[width(0)])).