/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@cs.vu.nl WWW: http://www.swi-prolog.org Copyright (C): 2014, VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(term_html, [ term//2 % +Term, +Options ]). :- use_module(library(http/html_write)). :- use_module(library(option)). :- use_module(library(error)). :- use_module(library(debug)). :- multifile blob_rendering//3. % +Type, +Blob, +Options /** Represent Prolog terms as HTML This file is primarily designed to support running Prolog applications over the web. It provides a replacement for write_term/2 which renders terms as structured HTML. */ %% term(@Term, +Options)// is det. % % Render a Prolog term as a structured HTML tree. % % @tbd Cyclic terms. % @tbd Attributed terms. % @tbd Portray % @tbd Test with Ulrich's write test set. % @tbd Deal with numbervars and canonical. term(Term, Options) --> { must_be(acyclic, Term), merge_options(Options, [ priority(1200), max_depth(1 000 000 000), depth(0) ], Options1), dict_create(Dict, _, Options1) }, any(Term, Dict). any(_, Options) --> { Options.depth >= Options.max_depth }, !, html(span(class('pl-ellipsis'), ...)). any(Term, Options) --> { primitive(Term, Class0), !, quote_atomic(Term, S, Options), primitive_class(Class0, Term, S, Class) }, html(span(class(Class), S)). any(Term, Options) --> { blob(Term,Type), Term \== [] }, !, ( blob_rendering(Type,Term,Options) -> [] ; html(span(class('pl-blob'),['<',Type,'>'])) ). any(Term, Options) --> { is_dict(Term), ! }, dict(Term, Options). any(Term, Options) --> { assertion((compound(Term);Term==[])) }, compound(Term, Options). %% compound(+Compound, +Options)// is det. % % Process a compound term. compound('$VAR'(Var), Options) --> { Options.get(numbervars) == true, !, format(string(S), '~W', ['$VAR'(Var), [numbervars(true)]]), ( S == "_" -> Class = 'pl-anon' ; Class = 'pl-var' ) }, html(span(class(Class), S)). compound(List, Options) --> { ( List == [] ; List = [_|_] % May have unbound tail ), !, arg_options(Options, ArgOptions) }, list(List, ArgOptions). compound({X}, Options) --> !, { arg_options(Options, _{priority:1200}, ArgOptions) }, html(span(class('pl-curl'), [ '{', \any(X, ArgOptions), '}' ])). compound(OpTerm, Options) --> { compound_name_arity(OpTerm, Name, 1), op1(Name, Type, Pri, ArgPri, Options), \+ Options.get(ignore_ops) == true, arg_options(Options, ArgOptions) }, !, op1(Type, Pri, OpTerm, ArgPri, ArgOptions). compound(OpTerm, Options) --> { compound_name_arity(OpTerm, Name, 2), op2(Name, LeftPri, Pri, RightPri, Options), \+ Options.get(ignore_ops) == true, arg_options(Options, ArgOptions) }, !, op2(Pri, OpTerm, LeftPri, RightPri, ArgOptions). compound(Compound, Options) --> { compound_name_arity(Compound, Name, Arity), quote_atomic(Name, S, Options.put(embrace, never)), arg_options(Options, _{priority:999}, ArgOptions) }, html(span(class('pl-compound'), [ span(class('pl-functor'), S), '(', \args(0, Arity, Compound, ArgOptions), ')' ])). %% arg_options(+Options, -OptionsOut) is det. %% arg_options(+Options, +Extra, -OptionsOut) is det. % % Increment depth in Options. arg_options(Options, Options.put(depth, NewDepth)) :- NewDepth is Options.depth+1. arg_options(Options, Extra, Options.put(depth, NewDepth).put(Extra)) :- NewDepth is Options.depth+1. %% args(+Arg0, +Arity, +Compound, +Options)// % % Emit arguments of a compound term. args(Arity, Arity, _, _) --> !. args(I, Arity, Compound, ArgOptions) --> { NI is I + 1, arg(NI, Compound, Arg) }, any(Arg, ArgOptions), ( {NI == Arity} -> [] ; html(', '), args(NI, Arity, Compound, ArgOptions) ). %% list(+List, +Options)// % % Emit a list. The List may have an unbound tail. list(List, Options) --> html(span(class('pl-list'), ['[', \list_content(List, Options), ']' ])). list_content([], _Options) --> !, []. list_content([H|T], Options) --> !, { arg_options(Options, ArgOptions) }, any(H, Options), ( {T == []} -> [] ; { Options.depth + 1 >= Options.max_depth } -> html(['|',span(class('pl-ellipsis'), ...)]) ; {var(T) ; \+ T = [_|_]} -> html('|'), tail(T, ArgOptions) ; html(', '), list_content(T, ArgOptions) ). tail(Value, Options) --> { var(Value) -> Class = 'pl-var-tail' ; Class = 'pl-nonvar-tail' }, html(span(class(Class), \any(Value, Options))). %% op1(+Name, -Type, -Priority, -ArgPriority, +Options) is semidet. % % True if Name is an operator taking one argument of Type. op1(Name, Type, Pri, ArgPri, Options) :- operator_module(Module, Options), current_op(Pri, OpType, Module:Name), argpri(OpType, Type, Pri, ArgPri), !. argpri(fx, prefix, Pri0, Pri) :- Pri is Pri0 - 1. argpri(fy, prefix, Pri, Pri). argpri(xf, postfix, Pri0, Pri) :- Pri is Pri0 - 1. argpri(yf, postfix, Pri, Pri). %% op2(+Name, -LeftPri, -Pri, -RightPri, +Options) is semidet. % % True if Name is an operator taking two arguments of Type. op2(Name, LeftPri, Pri, RightPri, Options) :- operator_module(Module, Options), current_op(Pri, Type, Module:Name), infix_argpri(Type, LeftPri, Pri, RightPri), !. infix_argpri(xfx, ArgPri, Pri, ArgPri) :- ArgPri is Pri - 1. infix_argpri(yfx, Pri, Pri, ArgPri) :- ArgPri is Pri - 1. infix_argpri(xfy, ArgPri, Pri, Pri) :- ArgPri is Pri - 1. %% operator_module(-Module, +Options) is det. % % Find the module for evaluating operators. operator_module(Module, Options) :- Module = Options.get(module), !. operator_module(TypeIn, _) :- '$module'(TypeIn, TypeIn). %% op1(+Type, +Pri, +Term, +ArgPri, +Options)// is det. op1(Type, Pri, Term, ArgPri, Options) --> { Pri > Options.priority }, !, html(['(', \op1(Type, Term, ArgPri, Options), ')']). op1(Type, _, Term, ArgPri, Options) --> op1(Type, Term, ArgPri, Options). op1(prefix, Term, ArgPri, Options) --> { Term =.. [Functor,Arg], FuncOptions = Options.put(embrace, never), ArgOptions = Options.put(priority, ArgPri), quote_atomic(Functor, S, FuncOptions) }, html(span(class('pl-compound'), [ span(class('pl-prefix'), S), \space(Functor, Arg, FuncOptions, ArgOptions), \any(Arg, ArgOptions) ])). op1(postfix, Term, ArgPri, Options) --> { Term =.. [Functor,Arg], ArgOptions = Options.put(priority, ArgPri), FuncOptions = Options.put(embrace, never), quote_atomic(Functor, S, FuncOptions) }, html(span(class('pl-compound'), [ \any(Arg, ArgOptions), \space(Arg, Functor, ArgOptions, FuncOptions), span(class('pl-postfix'), S) ])). %% op2(+Pri, +Term, +LeftPri, +RightPri, +Options)// is det. op2(Pri, Term, LeftPri, RightPri, Options) --> { Pri > Options.priority }, !, html(['(', \op2(Term, LeftPri, RightPri, Options), ')']). op2(_, Term, LeftPri, RightPri, Options) --> op2(Term, LeftPri, RightPri, Options). op2(Term, LeftPri, RightPri, Options) --> { Term =.. [Functor,Left,Right], LeftOptions = Options.put(priority, LeftPri), FuncOptions = Options.put(embrace, never), RightOptions = Options.put(priority, RightPri), ( ( need_space(Left, Functor, LeftOptions, FuncOptions) ; need_space(Functor, Right, FuncOptions, RightOptions) ) -> Space = ' ' ; Space = '' ), quote_op(Functor, S, Options) }, html(span(class('pl-compound'), [ \any(Left, LeftOptions), Space, span(class('pl-infix'), S), Space, \any(Right, RightOptions) ])). %% space(@T1, @T2, +Options)// % % Emit a space if omitting a space between T1 and T2 would cause % the two terms to join. space(T1, T2, LeftOptions, RightOptions) --> { need_space(T1, T2, LeftOptions, RightOptions) }, html(' '). space(_, _, _, _) --> []. need_space(T1, T2, _, _) :- ( is_solo(T1) ; is_solo(T2) ), !, fail. need_space(T1, T2, LeftOptions, RightOptions) :- end_code_type(T1, TypeR, LeftOptions.put(side, right)), end_code_type(T2, TypeL, RightOptions.put(side, left)), \+ no_space(TypeR, TypeL). no_space(punct, _). no_space(_, punct). no_space(quote(R), quote(L)) :- !, R \== L. no_space(alnum, symbol). no_space(symbol, alnum). %% end_code_type(+Term, -Code, Options) % % True when code is the first/last character code that is emitted % by printing Term using Options. end_code_type(_, Type, Options) :- Options.depth >= Options.max_depth, !, Type = symbol. end_code_type(Term, Type, Options) :- primitive(Term, _), !, quote_atomic(Term, S, Options), end_type(S, Type, Options). end_code_type(Dict, Type, Options) :- is_dict(Dict, Tag), !, ( Options.side == left -> end_code_type(Tag, Type, Options) ; Type = punct ). end_code_type('$VAR'(Var), Type, Options) :- Options.get(numbervars) == true, !, format(string(S), '~W', ['$VAR'(Var), [numbervars(true)]]), end_type(S, Type, Options). end_code_type(List, Type, _) :- ( List == [] ; List = [_|_] ), !, Type = punct. end_code_type(OpTerm, Type, Options) :- compound_name_arity(OpTerm, Name, 1), op1(Name, Type, Pri, ArgPri, Options), \+ Options.get(ignore_ops) == true, !, ( Pri > Options.priority -> Type = punct ; ( Type == prefix -> end_code_type(Name, Type, Options) ; arg(1, OpTerm, Arg), arg_options(Options, ArgOptions), end_code_type(Arg, Type, ArgOptions.put(priority, ArgPri)) ) ). end_code_type(OpTerm, Type, Options) :- compound_name_arity(OpTerm, Name, 2), op2(Name, LeftPri, Pri, _RightPri, Options), \+ Options.get(ignore_ops) == true, !, ( Pri > Options.priority -> Type = punct ; arg(1, OpTerm, Arg), arg_options(Options, ArgOptions), end_code_type(Arg, Type, ArgOptions.put(priority, LeftPri)) ). end_code_type(Compound, Type, Options) :- compound_name_arity(Compound, Name, _), end_code_type(Name, Type, Options). end_type(S, Type, _Options) :- number(S), !, Type = alnum. end_type(S, Type, Options) :- Options.side == left, !, sub_string(S, 0, 1, _, Start), syntax_type(Start, Type). end_type(S, Type, _) :- sub_string(S, _, 1, 0, End), syntax_type(End, Type). syntax_type("\"", quote(double)) :- !. syntax_type("\'", quote(single)) :- !. syntax_type("\`", quote(back)) :- !. syntax_type(S, Type) :- string_code(1, S, C), ( code_type(C, prolog_identifier_continue) -> Type = alnum ; code_type(C, prolog_symbol) -> Type = symbol ; code_type(C, space) -> Type = layout ; Type = punct ). %% dict(+Term, +Options)// dict(Term, Options) --> { dict_pairs(Term, Tag, Pairs), quote_atomic(Tag, S, Options.put(embrace, never)), arg_options(Options, ArgOptions) }, html(span(class('pl-dict'), [ span(class('pl-tag'), S), '{', \dict_kvs(Pairs, ArgOptions), '}' ])). dict_kvs([], _) --> []. dict_kvs(_, Options) --> { Options.depth >= Options.max_depth }, !, html(span(class('pl-ellipsis'), ...)). dict_kvs(KVs, Options) --> dict_kvs2(KVs, Options). dict_kvs2([K-V|T], Options) --> { quote_atomic(K, S, Options), end_code_type(V, VType, Options.put(side, left)), ( VType == symbol -> VSpace = ' ' ; VSpace = '' ), arg_options(Options, ArgOptions) }, html([ span(class('pl-key'), S), ':', % FIXME: spacing VSpace, \any(V, ArgOptions) ]), ( {T==[]} -> [] ; html(', '), dict_kvs2(T, Options) ). quote_atomic(Plain, Plain, _) :- number(Plain), !. quote_atomic(Plain, String, Options) :- Options.get(quoted) == true, !, ( Options.get(embrace) == never -> format(string(String), '~q', [Plain]) ; format(string(String), '~W', [Plain, Options]) ). quote_atomic(Var, String, Options) :- var(Var), !, format(string(String), '~W', [Var, Options]). quote_atomic(Plain, Plain, _). quote_op(Op, S, _Options) :- is_solo(Op), !, S = Op. quote_op(Op, S, Options) :- quote_atomic(Op, S, Options.put(embrace,never)). is_solo(Var) :- var(Var), !, fail. is_solo(','). is_solo(';'). is_solo('!'). %% primitive(+Term, -Class) is semidet. % % True if Term is a primitive term, rendered using the CSS % class Class. primitive(Term, Type) :- var(Term), !, Type = 'pl-avar'. primitive(Term, Type) :- atom(Term), !, Type = 'pl-atom'. primitive(Term, Type) :- string(Term), !, Type = 'pl-string'. primitive(Term, Type) :- integer(Term), !, Type = 'pl-int'. primitive(Term, Type) :- float(Term), !, Type = 'pl-float'. %% primitive_class(+Class0, +Value, -String, -Class) is det. % % Fixup the CSS class for lexical variations. Used to find % quoted atoms. primitive_class('pl-atom', Atom, String, Class) :- \+ atom_string(Atom, String), !, Class = 'pl-quoted-atom'. primitive_class(Class, _, _, Class). /******************************* * HOOKS * *******************************/ %% blob_rendering(+BlobType, +Blob, +WriteOptions)// is semidet. % % Hook to render blob atoms as HTML. This hook is called whenever % a blob atom is encountered while rendering a compound term as % HTML. The blob type is provided to allow efficient indexing % without having to examine the blob. If this predicate fails, the % blob is rendered as an HTML SPAN with class 'pl-blob' containing % BlobType as text. :- multifile blob_rendering//3.