/* Part of SWI-Prolog Author: Jan Wielemaker and Richard O'Keefe E-mail: J.Wielemaker@cs.vu.nl WWW: http://www.swi-prolog.org Copyright (C): 1985-2011, University of Amsterdam VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(lists, [ member/2, % ?X, ?List append/2, % +ListOfLists, -List append/3, % ?A, ?B, ?AB prefix/2, % ?Part, ?Whole select/3, % ?X, ?List, ?Rest selectchk/3, % ?X, ?List, ?Rest select/4, % ?X, ?XList, ?Y, ?YList selectchk/4, % ?X, ?XList, ?Y, ?YList nextto/3, % ?X, ?Y, ?List delete/3, % ?List, ?X, ?Rest nth0/3, % ?N, ?List, ?Elem nth1/3, % ?N, ?List, ?Elem nth0/4, % ?N, ?List, ?Elem, ?Rest nth1/4, % ?N, ?List, ?Elem, ?Rest last/2, % +List, -Element proper_length/2, % @List, -Length same_length/2, % ?List1, ?List2 reverse/2, % +List, -Reversed permutation/2, % ?List, ?Permutation flatten/2, % +Nested, -Flat % Ordered operations max_member/2, % -Max, +List min_member/2, % -Min, +List % Lists of numbers sum_list/2, % +List, -Sum max_list/2, % +List, -Max min_list/2, % +List, -Min numlist/3, % +Low, +High, -List % set manipulation is_set/1, % +List list_to_set/2, % +List, -Set intersection/3, % +List1, +List2, -Intersection union/3, % +List1, +List2, -Union subset/2, % +SubSet, +Set subtract/3 % +Set, +Delete, -Remaining ]). :- use_module(library(error)). :- use_module(library(pairs)). :- set_prolog_flag(generate_debug_info, false). /** List Manipulation This library provides commonly accepted basic predicates for list manipulation in the Prolog community. Some additional list manipulations are built-in. See e.g., memberchk/2, length/2. The implementation of this library is copied from many places. These include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL) and the YAP lists library. Some predicates are reimplemented based on their specification by Quintus and SICStus. @compat Virtually every Prolog system has library(lists), but the set of provided predicates is diverse. There is a fair agreement on the semantics of most of these predicates, although error handling may vary. */ %% member(?Elem, ?List) % % True if Elem is a member of List. The SWI-Prolog definition % differs from the classical one. Our definition avoids unpacking % each list element twice and provides determinism on the last % element. E.g. this is deterministic: % % == % member(X, [One]). % == % % @author Gertjan van Noord member(El, [H|T]) :- member_(T, El, H). member_(_, El, El). member_([H|T], El, _) :- member_(T, El, H). %% append(?List1, ?List2, ?List1AndList2) % % List1AndList2 is the concatenation of List1 and List2 append([], L, L). append([H|T], L, [H|R]) :- append(T, L, R). %% append(+ListOfLists, ?List) % % Concatenate a list of lists. Is true if ListOfLists is a list of % lists, and List is the concatenation of these lists. % % @param ListOfLists must be a list of _possibly_ partial lists append(ListOfLists, List) :- must_be(list, ListOfLists), append_(ListOfLists, List). append_([], []). append_([L|Ls], As) :- append(L, Ws, As), append_(Ls, Ws). %% prefix(?Part, ?Whole) % % True iff Part is a leading substring of Whole. This is the same % as append(Part, _, Whole). prefix([], _). prefix([E|T0], [E|T]) :- prefix(T0, T). %% select(?Elem, ?List1, ?List2) % % Is true when List1, with Elem removed, results in List2. select(X, [X|Tail], Tail). select(Elem, [Head|Tail], [Head|Rest]) :- select(Elem, Tail, Rest). %% selectchk(+Elem, +List, -Rest) is semidet. % % Semi-deterministic removal of first element in List that unifies % with Elem. selectchk(Elem, List, Rest) :- select(Elem, List, Rest0), !, Rest = Rest0. %% select(?X, ?XList, ?Y, ?YList) is nondet. % % Select from two lists at the same positon. True if XList is % unifiable with YList apart a single element at the same position % that is unified with X in XList and with Y in YList. A typical % use for this predicate is to _replace_ an element, as shown in % the example below. All possible substitutions are performed on % backtracking. % % == % ?- select(b, [a,b,c,b], 2, X). % X = [a, 2, c, b] ; % X = [a, b, c, 2] ; % false. % == % % @see selectchk/4 provides a semidet version. select(X, XList, Y, YList) :- select_(XList, X, Y, YList). select_([X|List], X, Y, [Y|List]). select_([X0|XList], X, Y, [X0|YList]) :- select_(XList, X, Y, YList). %% selectchk(?X, ?XList, ?Y, ?YList) is semidet. % % Semi-deterministic version of select/4. selectchk(X, XList, Y, YList) :- select(X, XList, Y, YList), !. %% nextto(?X, ?Y, ?List) % % True if Y follows X in List. nextto(X, Y, [X,Y|_]). nextto(X, Y, [_|Zs]) :- nextto(X, Y, Zs). %% delete(+List1, @Elem, -List2) is det. % % Delete matching elements from a list. True when List2 is a list % with all elements from List1 except for those that unify with % Elem. Matching Elem with elements of List1 is uses =|\+ Elem \= % H|=, which implies that Elem is not changed. % % @deprecated There are too many ways in which one might want to % delete elements from a list to justify the name. % Think of matching (= vs. ==), delete first/all, % be deterministic or not. % @see select/3, subtract/3. delete([], _, []). delete([Elem|Tail], Del, Result) :- ( \+ Elem \= Del -> delete(Tail, Del, Result) ; Result = [Elem|Rest], delete(Tail, Del, Rest) ). /* nth0/3, nth1/3 are improved versions from Martin Jansche */ %% nth0(?Index, ?List, ?Elem) % % True when Elem is the Index'th element of List. Counting starts % at 0. % % @error type_error(integer, Index) if Index is not an integer or % unbound. % @see nth1/3. nth0(Index, List, Elem) :- ( integer(Index) -> nth0_det(Index, List, Elem) % take nth deterministically ; var(Index) -> List = [H|T], nth_gen(T, Elem, H, 0, Index) % match ; must_be(integer, Index) ). nth0_det(0, [Elem|_], Elem) :- !. nth0_det(1, [_,Elem|_], Elem) :- !. nth0_det(2, [_,_,Elem|_], Elem) :- !. nth0_det(3, [_,_,_,Elem|_], Elem) :- !. nth0_det(4, [_,_,_,_,Elem|_], Elem) :- !. nth0_det(5, [_,_,_,_,_,Elem|_], Elem) :- !. nth0_det(N, [_,_,_,_,_,_ |Tail], Elem) :- M is N - 6, M >= 0, nth0_det(M, Tail, Elem). nth_gen(_, Elem, Elem, Base, Base). nth_gen([H|Tail], Elem, _, N, Base) :- succ(N, M), nth_gen(Tail, Elem, H, M, Base). %% nth1(?Index, ?List, ?Elem) % % Is true when Elem is the Index'th element of List. Counting % starts at 1. % % @see nth0/3. nth1(Index, List, Elem) :- ( integer(Index) -> Index0 is Index - 1, nth0_det(Index0, List, Elem) % take nth deterministically ; var(Index) -> List = [H|T], nth_gen(T, Elem, H, 1, Index) % match ; must_be(integer, Index) ). %% nth0(?N, ?List, ?Elem, ?Rest) is det. % % Select/insert element at index. True when Elem is the N'th % (0-based) element of List and Rest is the remainder (as in by % select/3) of List. For example: % % == % ?- nth0(I, [a,b,c], E, R). % I = 0, E = a, R = [b, c] ; % I = 1, E = b, R = [a, c] ; % I = 2, E = c, R = [a, b] ; % false. % == % % == % ?- nth0(1, L, a1, [a,b]). % L = [a, a1, b]. % == nth0(V, In, Element, Rest) :- var(V), !, generate_nth(0, V, In, Element, Rest). nth0(V, In, Element, Rest) :- must_be(nonneg, V), find_nth0(V, In, Element, Rest). %% nth1(?N, ?List, ?Elem, ?Rest) is det. % % As nth0/4, but counting starts at 1. nth1(V, In, Element, Rest) :- var(V), !, generate_nth(1, V, In, Element, Rest). nth1(V, In, Element, Rest) :- must_be(positive_integer, V), succ(V0, V), find_nth0(V0, In, Element, Rest). generate_nth(I, I, [Head|Rest], Head, Rest). generate_nth(I, IN, [H|List], El, [H|Rest]) :- I1 is I+1, generate_nth(I1, IN, List, El, Rest). find_nth0(0, [Head|Rest], Head, Rest) :- !. find_nth0(N, [Head|Rest0], Elem, [Head|Rest]) :- M is N-1, find_nth0(M, Rest0, Elem, Rest). %% last(?List, ?Last) % % Succeeds when Last is the last element of List. This % predicate is =semidet= if List is a list and =multi= if List is % a partial list. % % @compat There is no de-facto standard for the argument order of % last/2. Be careful when porting code or use % append(_, [Last], List) as a portable alternative. last([X|Xs], Last) :- last_(Xs, X, Last). last_([], Last, Last). last_([X|Xs], _, Last) :- last_(Xs, X, Last). %% proper_length(@List, -Length) is semidet. % % True when Length is the number of elements in the proper list % List. This is equivalent to % % == % proper_length(List, Length) :- % is_list(List), % length(List, Length). % == proper_length(List, Length) :- '$skip_list'(Length0, List, Tail), Tail == [], Length = Length0. %% same_length(?List1, ?List2) % % Is true when List1 and List2 are lists with the same number of % elements. The predicate is deterministic if at least one of the % arguments is a proper list. It is non-deterministic if both % arguments are partial lists. % % @see length/2 same_length([], []). same_length([_|T1], [_|T2]) :- same_length(T1, T2). %% reverse(?List1, ?List2) % % Is true when the elements of List2 are in reverse order compared to % List1. reverse(Xs, Ys) :- reverse(Xs, [], Ys, Ys). reverse([], Ys, Ys, []). reverse([X|Xs], Rs, Ys, [_|Bound]) :- reverse(Xs, [X|Rs], Ys, Bound). %% permutation(?Xs, ?Ys) is nondet. % % True when Xs is a permutation of Ys. This can solve for Ys given % Xs or Xs given Ys, or even enumerate Xs and Ys together. The % predicate permutation/2 is primarily intended to generate % permutations. Note that a list of length N has N! permutations, % and unbounded permutation generation becomes prohibitively % expensive, even for rather short lists (10! = 3,628,800). % % If both Xs and Ys are provided and both lists have equal length % the order is |Xs|^2. Simply testing whether Xs is a permutation % of Ys can be achieved in order log(|Xs|) using msort/2 as % illustrated below with the =semidet= predicate is_permutation/2: % % == % is_permutation(Xs, Ys) :- % msort(Xs, Sorted), % msort(Ys, Sorted). % == % % The example below illustrates that Xs and Ys being proper lists % is not a sufficient condition to use the above replacement. % % == % ?- permutation([1,2], [X,Y]). % X = 1, Y = 2 ; % X = 2, Y = 1 ; % false. % == % % @error type_error(list, Arg) if either argument is not a proper % or partial list. permutation(Xs, Ys) :- '$skip_list'(Xlen, Xs, XTail), '$skip_list'(Ylen, Ys, YTail), ( XTail == [], YTail == [] % both proper lists -> Xlen == Ylen ; var(XTail), YTail == [] % partial, proper -> length(Xs, Ylen) ; XTail == [], var(YTail) % proper, partial -> length(Ys, Xlen) ; var(XTail), var(YTail) % partial, partial -> length(Xs, Len), length(Ys, Len) ; must_be(list, Xs), % either is not a list must_be(list, Ys) ), perm(Xs, Ys). perm([], []). perm(List, [First|Perm]) :- select(First, List, Rest), perm(Rest, Perm). %% flatten(+NestedList, -FlatList) is det. % % Is true if FlatList is a non-nested version of NestedList. Note % that empty lists are removed. In standard Prolog, this implies % that the atom '[]' is removed too. In SWI7, `[]` is distinct % from '[]'. % % Ending up needing flatten/3 often indicates, like append/3 for % appending two lists, a bad design. Efficient code that generates % lists from generated small lists must use difference lists, % often possible through grammar rules for optimal readability. % % @see append/2 flatten(List, FlatList) :- flatten(List, [], FlatList0), !, FlatList = FlatList0. flatten(Var, Tl, [Var|Tl]) :- var(Var), !. flatten([], Tl, Tl) :- !. flatten([Hd|Tl], Tail, List) :- !, flatten(Hd, FlatHeadTail, List), flatten(Tl, Tail, FlatHeadTail). flatten(NonList, Tl, [NonList|Tl]). /******************************* * ORDER OPERATIONS * *******************************/ %% max_member(-Max, +List) is semidet. % % True when Max is the largest member in the standard order of % terms. Fails if List is empty. % % @see compare/3 % @see max_list/2 for the maximum of a list of numbers. max_member(Max, [H|T]) :- max_member_(T, H, Max). max_member_([], Max, Max). max_member_([H|T], Max0, Max) :- ( H @=< Max0 -> max_member_(T, Max0, Max) ; max_member_(T, H, Max) ). %% min_member(-Min, +List) is semidet. % % True when Min is the smallest member in the standard order of % terms. Fails if List is empty. % % @see compare/3 % @see min_list/2 for the minimum of a list of numbers. min_member(Min, [H|T]) :- min_member_(T, H, Min). min_member_([], Min, Min). min_member_([H|T], Min0, Min) :- ( H @>= Min0 -> min_member_(T, Min0, Min) ; min_member_(T, H, Min) ). /******************************* * LISTS OF NUMBERS * *******************************/ %% sum_list(+List, -Sum) is det. % % Sum is the result of adding all numbers in List. sum_list(Xs, Sum) :- sum_list(Xs, 0, Sum). sum_list([], Sum, Sum). sum_list([X|Xs], Sum0, Sum) :- Sum1 is Sum0 + X, sum_list(Xs, Sum1, Sum). %% max_list(+List:list(number), -Max:number) is semidet. % % True if Max is the largest number in List. Fails if List is % empty. % % @see max_member/2. max_list([H|T], Max) :- max_list(T, H, Max). max_list([], Max, Max). max_list([H|T], Max0, Max) :- Max1 is max(H, Max0), max_list(T, Max1, Max). %% min_list(+List:list(number), -Min:number) is semidet. % % True if Min is the smallest number in List. Fails if List is % empty. % % @see min_member/2. min_list([H|T], Min) :- min_list(T, H, Min). min_list([], Min, Min). min_list([H|T], Min0, Min) :- Min1 is min(H, Min0), min_list(T, Min1, Min). %% numlist(+Low, +High, -List) is semidet. % % List is a list [Low, Low+1, ... High]. Fails if High < Low. % % @error type_error(integer, Low) % @error type_error(integer, High) numlist(L, U, Ns) :- must_be(integer, L), must_be(integer, U), L =< U, numlist_(L, U, Ns). numlist_(U, U, List) :- !, List = [U]. numlist_(L, U, [L|Ns]) :- L2 is L+1, numlist_(L2, U, Ns). /******************************** * SET MANIPULATION * *********************************/ %% is_set(@Set) is det. % % True if Set is a proper list without duplicates. Equivalence is % based on ==/2. The implementation uses sort/2, which implies % that the complexity is N*log(N) and the predicate may cause a % resource-error. There are no other error conditions. is_set(Set) :- '$skip_list'(Len, Set, Tail), Tail == [], % Proper list sort(Set, Sorted), length(Sorted, Len). %% list_to_set(+List, ?Set) is det. % % True when Set has the same elements as List in the same order. % The left-most copy of duplicate elements is retained. List may % contain variables. Elements _E1_ and _E2_ are considered % duplicates iff _E1_ == _E2_ holds. The complexity of the % implementation is N*log(N). % % @see sort/2 can be used to create an ordered set. Many % set operations on ordered sets are order N rather than % order N**2. The list_to_set/2 predicate is more % expensive than sort/2 because it involves, in addition % to a sort, three linear scans of the list. % @compat Up to version 6.3.11, list_to_set/2 had complexity % N**2 and equality was tested using =/2. % @error List is type-checked. % @author Ulrich Neumerkel list_to_set(List, Set) :- must_be(list, List), pairs_keys(Indexed, List), % Create pairs Value-Var keysort(Indexed, ByValue), equalize(ByValue), % Unify vars of same value pairs_to_keyset(Indexed,Set). % Select the first one equalize([]). equalize([K-I|KIs]) :- equalize_to(KIs, K, I). equalize_to([], _, _). equalize_to([K-I|KIs], Kr, Ir) :- ( K == Kr -> I = Ir, equalize_to(KIs, Kr, Ir) ; equalize_to(KIs, K, I) ). pairs_to_keyset([], []). pairs_to_keyset([K-I|KIs], Ks0) :- var(I), !, I = v, Ks0 = [K|Ks], pairs_to_keyset(KIs, Ks). pairs_to_keyset([_KI|KIs], Ks) :- pairs_to_keyset(KIs, Ks). %% intersection(+Set1, +Set2, -Set3) is det. % % True if Set3 unifies with the intersection of Set1 and Set2. % The complexity of this predicate is |Set1|*|Set2| % % @see ord_intersection/3. intersection([], _, []) :- !. intersection([X|T], L, Intersect) :- memberchk(X, L), !, Intersect = [X|R], intersection(T, L, R). intersection([_|T], L, R) :- intersection(T, L, R). %% union(+Set1, +Set2, -Set3) is det. % % True if Set3 unifies with the union of Set1 and Set2. % The complexity of this predicate is |Set1|*|Set2| % % @see ord_union/3. union([], L, L) :- !. union([H|T], L, R) :- memberchk(H, L), !, union(T, L, R). union([H|T], L, [H|R]) :- union(T, L, R). %% subset(+SubSet, +Set) is semidet. % % True if all elements of SubSet belong to Set as well. Membership % test is based on memberchk/2. The complexity is |SubSet|*|Set|. % % @see ord_subset/2. subset([], _) :- !. subset([E|R], Set) :- memberchk(E, Set), subset(R, Set). %% subtract(+Set, +Delete, -Result) is det. % % Delete all elements in Delete from Set. Deletion is based on % unification using memberchk/2. The complexity is |Delete|*|Set|. % % @see ord_subtract/3. subtract([], _, []) :- !. subtract([E|T], D, R) :- memberchk(E, D), !, subtract(T, D, R). subtract([H|T], D, [H|R]) :- subtract(T, D, R).