#---------------------------------------------------------------- # Problem: In a ring, if x*x*x = x for all x # in the ring, then # x*y = y*x and 6*x = 0 for all x,y in the ring. # # Funktionen: f : Multiplikation * # J : Addition + # g : Inverses # e : Neutrales Element # a,b : Konstanten j (e,X) = X. # e ist a left identity for sum j (X,e) = X. # e ist a right identity for sum j (g (X),X) = e. # there exists a left inverse for sum j (X,g (X)) = e. # there exists a right inverse for sum j (j (X,Y),Z) = j (X,j (Y,Z)). # associativity of addition j (X,Y) = j(Y,X). # commutativity of addition f (f (X,Y),Z) = f (X,f (Y,Z)). # associativity of multiplication f (X,j (Y,Z)) = j (f (X,Y),f (X,Z)). # distributivity axioms f (j (X,Y),Z) = j (f (X,Z),f (Y,Z)). # f (f(X,X),X) = X. # special hypothese: x*x*x = x f (a,b) != f (b,a). # theorem