(*** Chad E Brown, Andreas Teucke ***) (*** Aug 2010 - June 2011 - September 2011 (-nois version) ***) (*** Moving just what I need to here from the Coq library, redefining connectives to avoid inductive props. ***) Require Export stt1. (** * Axioms of simple type theory *) (** We include an epsilon operator (Eps) as a form of the axiom of choice. *) Axiom Eps : forall (A : SType), ((A>prop)>A). (* 1 1 *) Axiom EpsR : forall (A : SType), forall P:A>prop, forall x:A, P x -> P (Eps A P). (* 1 2 *) (** Propositional extensionality: Equivalent propositions are equal. **) Axiom prop_ext : forall A B:prop, (A -> B) -> (B -> A) -> A = B. (* 1 0 0 *) (** Functional extensionality: Equivalent functions are equal. **) Axiom func_ext : forall (A B:SType) (f g : A > B), (forall x, f x = g x) -> f = g. (* 2 *)