E 2.5

User Manual

—preliminary version—

Stephan Schulz

October 27, 2020

Abstract

E is an equational theorem prover for full first-order logic (with optional support
for some higher-order features), based on superposition and rewriting. In this
perpetually preliminary manual we first give a short introduction and basic
usage information for new users, and then cover calculus and proof procedure.
The manual also covers proof search control and related options, followed by
input and output formats. Finally, it describes some additional tools that are
part of the E distribution.

Contents

Introduction
Getting Started

Calculus and Proof Procedure

3.1 Calculus

3.2 Preprocessingo

3.3 Proof Procedure
3.3.1 Propositional Reasoning

Controlling the Proof Search
4.1 Search Control Heuristics
4.2 Term Orderings
4.2.1 Precedence Generation Schemes
4.2.2 Weight Generation Schemes
4.2.3 Literal Comparison
4.3 Literal Selection Strategies.
4.4 Controling Propositional Reasoning
4.5 The Watchlist Feature
4.6 Learning Clause Evaluation Functions
4.7 Other Options

Input Language

51 LOP e
5.2 TPTP-2 and TPTP-3 Formats
5.3 Lambda-free higher-order extension

Output...or how to interpret what you see

6.1 The Bare Essentials
6.2 Observing Saturation 0L
6.3 Inference Protocols
6.4 Proofs Objects
6.5 ANSWErS e
6.6 Requesting Specific Output

11
14
14

16
16
22
24
25
26
27
28
29
30
31

7 Additional utilities
7.1 Common options
7.2 Grounding: eground
7.3 Rewriting: enormalizer
7.4 Multiple queries: e_ltb_.runner
741 Usage o e
7.4.2 Batch specification file L.
7.4.3 Interactive queries
7.5 Specification pruning: e_axfilter
7.5.1 Filter algorithms

7.5.2 Filter specification
A Acknowledgements

B License

41
41
41
43
43
44
44
46
46
48
48

50

51

Chapter 1

Introduction

This is a short and currently quite sketchy documentation of the equational
theorem prover E. E is an purely equational theorem prover for full first-order
logic with equality. It is based on paramodulation and rewriting. This means
that E reads a set of formulas and/or clauses and saturates it by systematically
applying a number of inference rules until either all possible (non-redundant)
inferences have been performed or until the empty clause has been derived, i.e.
the clause set has been found to be unsatisfiable and thus the conjecture has
been proved.

Even after 20 years, E is still a moving target. However, most recent releases
have been quite stable, and the prover is being used productively by several
independent groups of people. This manual should enable you to experiment
with the prover and to use some of its more advanced features. Be aware that
it often lags behind the implementation. The ultimate reference is the source
code. Also, the help page (produced eprover -h and equivalent to the UNIX
man page delivered with the prover) is always an up-to-date documentation of
the available command line options.

The manual assumes a working knowledge of refutational theorem proving,
which can be gained from e.g. [CL73]. The calculus is (mostly) a specialisation
of superposition as described by Bachmair and Ganzinger [BG94].

The primary description of E has been published as [Sch02b], while the
most recent published descriptions are [Sch13] (including the extension to many-
sorted logic) and [SCV19] (including optional extension to LFHO and integra-
tion of PicoSAT). Most papers on E and much more information is available at
or a few hops away from the E home page, https://www.eprover.org.

Some other provers have influenced the design of E and may be refer-
enced in the course of this manual. These include SETHEO [MIL"97], Ot-
ter [McC94, MW97], SPASS [WGR96, WAB199], DISCOUNT [DKS97|, Wald-
meister [HBF96, HJL99] and Vampire [RV02, RV01, KV13].

Chapter 2

Getting Started

Installation of E should be straightforward, but requires a standard UNIX/Linux
build environment, including /bin/sh, gcc (or an equivalent compiler), and
make. The file README (or README.md) in the main directory of the distribution
contains the necessary information. After configuring and building the system,
you will find the stand-alone executable E/PROVER/eprover, or E/PROVER/eprover-ho
if you configured the system with support for lambda-free higher-order logic.

E is controlled by a very wide range of parameters. However, if you do not
want to bother with the details, you can leave configuration for a problem to
the prover. To use this feature, use the following command line options:

--satauto Choose literal selection strategy, clause evalua-
tion heuristic, term ordering and other search
parameters automagically, based on problem fea-
tures.

--auto As --satauto, but add heuristic specification
pruning using one of several instantiation of the
SInE algorithm [HV11] for large specifications.
This makes the prover potentially incomplete.

--auto-schedule As --auto, but try not one, but several different
strategies.

--memory-limit=xx Tell the prover how much memory (measured in
MB) to use at most. In automatic mode E will op-
timize its behaviour for this amount (32 MB will
work, 128 MB is reasonable, 1024 MB is what I
use. More is better!, but if you go over your phys-
ical memory, you will probably experience very
heavy swapping.) Due to limitations of rlim_t,
values over 2047 may not work on all platforms. If
you have ab up-to-date machine and plan on run-
ning the prover for a few minutes at most, this
has become a lot less critical than in the past.

Ezample: If you happen to have a workstation with 64 MB RAM?, the
following command is reasonable:

eprover --auto --memory-limit=48 PUZ031-1+rm_eq_rstfp.lop

IEmphasis added for E 0.7 and up, which globally cache rewrite steps.
2Yes, this is outdated. If it still applies to you, get a new computer! It will still work ok,
though.

Chapter 3

Calculus and Proof
Procedure

E is a purely equational theorem prover, based on ordered paramodulation and
rewriting. As such, it implements an instance of the superposition calculus
described in [BG94]. We have added some stronger contraction rules and a
more general approach to literal selection, and have also extended the calculus
to simple, monomorphic many-sorted logic (in the sense of the TPTP-3 TFF
format [SSCB12]).

The core proof procedure is a variant of the given-clause algorithm. However,
before proof search in clause normal form (CNF) begins, various transformations
can be applied to the input problem. In particular, E processes not only clausal
problems, but can read full first order format, including a rich set of formula
roles, logical operators and quantifiers. This format is reduced to clause normal
form in a way that the CNF is unsatisfiable if and only if the original problem
is provable (if an explicit conjecture is given) or itself unsatisfiable.

3.1 Calculus

We assume a finite set S = {S;} of sorts (or atomic types), with each sort
interpreted by a non-empty domain disjoint from the domains of all other sorts.
With each sort S; we associate an enumerable set of variables Vg, , with VaNVpr =
0 if S # T (i.e. each variable has a unique sort). We assume at least two sorts,
$i (individuals) and $o (truth values).

A type is a non-empty tuple (S1,...,5,,T) with T' € S and S; € S for all
S;. We usually write a type as (S1,...,S5,) — T. The S; are called argument
sorts and T is called the resulting sort.

A signature F' is a finite set of function symbols with associated types. We
write f: (S1,...,S,) — T to indicate that f is of type (S1,...,5,) = T.

Term(F, V) denotes the set of (sorted first order) terms over F and V,
defined as follows: = € Vg, is a term of sort S;. If f : (S1,...,5,) — T is

a function symbol in F and ty,...t, are terms of sorts S1,....S,, respectively,
then f(s1,...,8n) is a term of sort T. We require that the S; # $o, and call
function symbols with resulting type $o predicate symbols.

We write t|,, to denote the subterm of ¢ at a position p and write t[p < t'] to
denote t with ¢|, replaced by t’. An equation s~t is an (implicitly symmetrical)
pair of terms (of the same sort). A positive literal is an equation s ~ ¢, a
negative literal is a negated equation s#t. We write s=~t to denote an arbitrary
literal.! Literals can be represented as multi-sets of multi-sets of terms, with
s ~ t represented as {{s},{t}} and s # ¢ represented as {{s,t}}. A ground
reduction ordering > is a Noetherian partial ordering that is stable w.r.t. the
term structure and substitutions and total on ground terms. > can be extended
to an ordering >, on literals by comparing the multi-set representation of literals
with >>>> (the multi-set-multi-set extension of >).

Clauses are multi-sets of literals. They are usually represented as disjunc-
tions of literals, s1=t1 V sty ...V sp,~t,. We write Clauses(F, P, V') to denote
the set of all clauses with function symbols F', predicate symbols P and vari-
ables V. If C is a clause, we denote the (multi-)set of positive literals in C by
C* and the (multi-)set of negative literals in C by C~ We extend >, to clauses
by defining >c=>1>, i.e. we compare clauses as multi-sets of literals.

We write s[t < '] to denote the term s in which every occurance of the
subterm ¢ has been replaced by t'. We extend this notion to literals and clauses
(i.e. C[t < t'] is the clause C' in which all occurrences of ¢ have been replaced
by t').

A substitution is a function o : V' — Term(F,V) with the properties that
[{x € V| o(z) # x}| € N (i.e. only finitely many variables are substituted) and
that « and o(x) are terms of the same sort for all z € V. Substitutions are
extended to literals and clauses in the obvious way. A most general unifier of
two terms s and ¢ is a substitution o with o(s) = o(¢) and with the property
that no other unifier is more general than o. If the mgu of two terms exists,
it is unique up to variable renaming, so we usually speak of the most general
unifier of two terms and denote it by mgu(s,t).

In the following, most inferences between clauses are performed at particular
literals of the clauses. Inference literals can be determined the term ordering, or,
sometimes, by selection. The introduction of an extended notion of literal selec-
tion has improved the performance of E significantly. The necessary concepts
are explained in the following.

Definition 3.1.1 (Selection functions)
sel : Clauses(F, P, V) — Clauses(F, P, V) is a selection function, if it has the
following properties for all clauses C:

INon-equational literals are encoded as equations or disequations P(t1,...,tn)=T, where
the resulting sort of P and T is $o.

In other words, we treat predicate symbols as special function symbols that can only occur
at the top-most positions and demand that atoms (terms formed with a top predicate sym-
bol) cannot be unified with a first-order variable, i.e. we treat normal terms and predicate
terms as disjoint sorts. We sometimes write the literal P(t1,...,tn)~T as P(t1,...,tn) and
P(ty,...,tn)2T as =P(t1,...,tn) for simplicity.

e sel(C) CC.
o If sel(C)NC~ =0, then sel(C) = 0.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L € sel(C). <

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L V'R be a clause, let ¢ be a substitution and let sel be a selection
function.

e We say o(L) is eligible for resolution if either

— sel(C) =0 and o(L£) is >p-maximal in o(C) or
(C)ynC~) or
(€)ync).

— sel(C) # 0 and (L) is >-maximal in o(sel
— sel(C) # 0 and o(L) is >p-maximal in o(sel

e o(L) is eligible for paramodulation if L is positive, sel(C) = 0 and (L) is
strictly >p-maximal in o(C).

<

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, o is a substitution and R, S and T are
(partial) clauses. p is a position in a term and X is the empty or top-position.
D C F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)

Let > be a total simplification ordering (extended to orderings > and >¢
on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

e FEquality Resolution:

ugvV R if o0 = mgu(u,v) and o(u®
o(R) v) is eligible for resolution.

(ER)

Superposition into negative literals:

s~tVS u®uvVR
o(ulp < t]2vV SV R)

(SN)

Superposition into positive literals:

s~tVS u~vVR

(SP) o(ulp < tj=vV SV R)

if o0 = mgu(ulp,s), o(s) £
o(t), o(u) £ o(v), o(s~t)
is eligible for paramodula-
tion, o(usw) is eligible for
resolution, and ul, ¢ V.

if o0 = mgu(ulp,s), o(s) £
o(t), o(u) £ o(v), o(s~1)
is eligible for paramodula-
tion, o(u~w) is eligible for
resolution, and ul, ¢ V.

Simultaneous superposition into negative literals

s~tVS u®uvVR
o(SV (uvV R)ul, < t])

(SSN)

if o0 = mgu(ulp, s), o(s) £
o(t), o(u) £ o(v), o(s~t)
is eligible for paramodula-
tion, o(uw) is eligible for
resolution, and ul, ¢ V.

This inference rule is an alternative to (SN). Note that the difference is
that every occurrence of the subterm unified with the right-hand side of
the rewriting clause is replaced by the (instance of) the left hand side
in the (instance of) the clause that is rewritten. This single rule usually
performs better than a sequence of conventional superpositions in practice.

Stmultaneous superposition into positive literals

s~tVS u~vVR
o(SV (u~vV R)ul, < t])

(SSP)

if o0 = mgu(ulp,s), o(s) £
o(t), o(u) £ o(v), o(s~t)
is eligible for paramodula-
tion, o(usw) is eligible for
resolution, and ul, ¢ V.

This inference rule is an alternative to (SP) that performs better in prac-

tice. See the note on the previous rule.

FEquality factoring:

s~tVu~vV R
o(t#£vVu~vVR)

(EF)

if o = mgu(s,u), o(t) #
o(s) and o(s=~t) eligible for
paramodulation.

e Rewriting of negative literals:

(RN) s=l_upuv R if ul, = o(s) and o(s) > o(t)
s~t wulp< o(t)]2vVR e = oRs) e et = et

e Rewriting of positive literals?:

if ulp, = o(s), o(s) > o(t),

(RP) s~t u~vVR and if u~wv is not eligible for
s~t ulp+— o(t)~vVR paramodulation or v > u or
p#FA

e Clause subsumption:

C o(CVR) where C' and R are arbitrary
(CS) ——= (partial) clauses and o is a
c substitution.

e FEquality subsumption:

s~t wul[p <+ o(s)|~ulp+ o(t)]VR

s~t

(ES)

o Positive simplify-reflect’:

s~t ulp < o(s)]|#ulp <+ o(t)]VR
s~t R

(PS)

e Negative simplify-reflect

s#t o(s)#o(t)VR
s#t R

(NS)

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

if ulp = o(s), o(s) > o(t) and if u~~

(RP") s~t u~vVR v is not eligible for paramdulation or
s~t wu[p+ o(t))2vVR u ¥ vorp% Aor o is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if o(s) and o(t) are >-incomparable — in all other
cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

e Tautology deletion:

C
(TD) — if C is a tautology®

e Deletion of duplicate literals:

s~tVs~tVR
s~tV R

(DD)

e Deletion of resolved literals:

(DR) s#tsVR
R

e Destructive equality resolution:

VR
(DE) L if x,y € V,0 = mgu(z,y)
o(R)

o Contextual literal cutting:

a(CV RV s=t) CVs=t where st is the negation of
o(C'VR) CV s>t st and o is a substitution

(CLC)

This rule is also known as subsumption resolution or clausal simplification.

e (Condensing:

LVIEVR if o(l1) = o(l2) and o (I, V R)

(CON) o(l, V R) subsumes I; Vi2 V R

o Introduce definition®

if R and S do not share any

RV S variables, d € D has not been
(ID) used in a previous definition
dVR —-dVvS and R does not contain any

symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11

o Apply definition

if o is a variable renaming, R
o(dVR) RVS and S do not share any vari-
o(dVR) —dvS ables, d € D and R does not

contain any symbol from D

(AD)

We write SP(N) to denote the set of all clauses that can be generated with one
generating inference from SP on a set of clauses N, Dgp to denote the set of
all SP-derivations, and Dgp to denote the set of all finite SP-derivations.

<

As SP only removes clauses that are composite with respect to the remaining
set of clauses, the calculus is complete. For the case of unit clauses, it degener-
ates into unfailing completion [BDP89] as implemented in DISCOUNT. E can
also simulate the positive unit strategy for Horn clauses described in [Der91]
using appropriate selection functions.

Contrary to e.g. SPASS, E does not implement special rules for non-equa-
tional literals or sort theories. Non-equational literals are encoded as equations
and dealt with accordingly.

3.2 Preprocessing

Axiom Filtering

Real-life axiom sets have grown steadily over the last years. One increasing
application for deduction is e.g. the answering of questions based on large
common-sense ontologies. Such specifications can contain from several thousand
to several million input axioms, only a small part of which are necessary for any
given query.

To avoid swamping the inference engine with most likely irrelevant facts, E
implements two different filtering mechanisms. Both start with the conjecture,
select facts that are likely connected to the conjecture, and then recursively
apply this process again.

e Classical relevancy pruning starts with the function and predicate sym-
bols in the goal. Every axiom that shares such a symbol is considered
relevant. Symbols in relevant axioms become relevant themselves. The
process is then repeated for a selected number of iterations. The option
--rel-pruning-level determines how many iterations are performed.
Relevance pruning is complete in the non-equational case if allowed to
reach a fixed point. It only provides a relatively coarse measure, however.

e More fine-grained control is offered by the SInE method [HV11]. SInE
does not consider all symbols in already selected clauses and formulas to
be relevant, but defines a D-relation that determines which symbols to
consider relevant. E implements a frequency-based D-relation: in every

12

clause or formula, the least frequently occurring symbols are considered
relevant.

SInE in E is controlled via the option --sine. It takes as its argument
either the name of a predefined SInE filter specification, or a newly defined
strategy. The default is equivalent to ——sine=Auto and will automatically
determine if axiom filtering should be applied, and if yes, which filter
should be applied. Filter selection is based on a number of features of
the problem specification, and on performance of different filters on the
TPTP problem library.

A SInE-Filter for E is specified as follows:

<sine-filter> ::= GSinE(<g-measure>,
hypos |nohypos,
<benvolvence>,
<generosity>,
<rec-depth>,
<set-size>,
<set-fraction> [,
addnosymb | ignorenosymb])

— <g-measure> is the generality measure. Currently, CountFormulas
and CountTerms are supported. The first considers a symbol more
general than another if it occurse in more formulas. The second
counts the number of subterms which contain the symbol as the top
symbol.

— hypos or nohypos determines if clauses and formulas of type hypothesis
are used as additional seeds for the analysis.

— <benevolence> is a floating point value that determines how much
more general a function symbol in a clause or formula is allowed
to be relative to the least general one to be still considered for the
D-relation.

— <generosity> is an integer count and determines how many symbols
are maximally considered for the D-relation of each clause or formula.

— <rec-depth> determines the maximal number of iterations of the
selection algorithm.

— <set-size> gives an absolute upper bound for the number of clauses
and formulas selected.

— set-fraction gives a relative size (which fraction of clauses/formulas)
will be at most selected

— Finally, the optional last argument determines if clauses or formulas
which do not contain any function- or predicate symbols pass the
filter. This is a rare occurence, so the effect is minor in either case.

13

Clausification

E converts problems in full FOF into clause normal form using a slightly simpli-
fied version of the algorithm described by Nonnengart and Weidenbach [NWO01].
E’s algorithm has the following modifications:

e E supports the full set of first-order connectives defined in the TPTP-3
language.

e E is more eager about introducing definitions to keep the CNF from
exponential explosion. E will introduce a definition for a sub-formula,
if it can determine that it will be duplicated more than a given num-
ber of times in the naive output. The limit can be set with the option
--definitional-cnf. E will reuse definitions generated for one input for-
mula for syntactically identical formulae in other formulas with the same
specification.

e E supports mini-scoping, but not the more advanced forms of Skolemiza-
tion.

It is possible to use E as a clausifier only. When given the --cnf option, E
will just perform clausification and print the resulting clause set.

Equational Definition unfolding

Equational definitions are unit clauses of the form f(Xi,...,X,) =t, where f
does not occur in ¢, and all variables in t are also in f. In this case, we can
completely replace all occurrences of f by the properly instantiated ¢. This
reduces the size of the search space, but can increase the size of the input
specification. In particular in the case of nested occurrences of f, this increase
can be significant.

E controls equational definition unfolding with the following options:

--eq-unfold-limit=<arg> limits unfolding (and removing) of equational
definitions to those where the expanded definition is at most the given limit
bigger (in terms of standard term weight) than the defined term.

--eq-unfold-maxclauses=<arg> inhibits unfolding of equational definitions
if the problem has more than the stated limit of clauses.

--no-eq-unfolding disables equational definition unfolding completely.

Presaturation Interreduction

If the option --presat-simplify is set, E will perform an inital interreduction
of the clause set. It will exhaustively apply simplifying inferences by running
its main proof procedure while disabling generating inferences.

Some problems can be solved purely by simplification, without the need for
deducing new clauses via the expensive application of the generating inference
rules, in particularly paramodulation/superposition. Moreover, exhaustive ap-
plication of simplifying inferences can reduce redundancy in the specification

14

and allows all input clauses to be evaluated under the same initial conditions.
On the down side, a complete interreduction of the input problem can take
significant time, especially for large specifications.

3.3 Proof Procedure

Fig. 3.1 shows a (slightly simplified) pseudocode sketch of the quite straightfor-
ward proof procedure of E. The set of all clauses is split into two sets, a set P of
processed clauses and a set U of unprocessed clauses. Initially, all input clauses
are in in U, and P is empty. In its normal mode of operation, at each iteration of
the look the algorithm selects a new clause (sometimes called the given clause)
from U, simplifies it w.r.t. to P, then uses it to back-simplify the clauses in P in
turn. It then performs equality factoring, equality resolution and superposition
between the selected clause and the set of processed clauses. The generated
clauses are simplified and added to the set of unprocessed clauses. The process
stops when the empty clause is derived or no further inferences are possible.

The proof search is controlled by three major parameters: The term ordering
(described in section 4.2), the literal selection function, and the order in which
the select operation selects the next given clause to process.

E implements two different classes of term orderings, lexicographic term or-
derings and Knuth-Bendix orderings. A given ordering is determined by instan-
tiating one of the classes with a variety of parameters (described in section 4.2).

Literal selection currently is done according to one of more than 50 prede-
fined functions. Section 4.3 describes this feature.

Clause selection is determined by a heuristic evaluation function, which con-
ceptually sets up a set of priority queues and a weighted round robin scheme
that determines from which queue the next clause is to be picked. The order
within each queue is determined by a priority function (which partitions the
set of unprocessed clauses into one or more subsets) and a heuristic evaluation
function, which assigns a numerical rating to each clause. Section 4.1 describes
the user interface to this mechanism.

3.3.1 Propositional Reasoning

As of E 2.1, and with a more refined implementation in E 2.2, the prover sup-
ports efficient propositional reasoning by integrating PicoSAT [Bie08]. The
prover periodically grounds all clauses in the proof state and encodes the set of
ground clauses for the propositional solver. If the propositional solver finds a
proof for unsatisfiability of the ground problem, Herbrand’s theorem allow us
to lift this to the first-order level. In the implementation, the prover extract the
unsatisfiable core of the grounded clause set, retrieves the corresponding first-
order clauses, and adds an suitable pseudo-inference to the first-order proof
objects. A more detailed description is available in [Sch18].
See section 4.4 for options controlling this feature.

15

Input: Axioms in U, P is empty
while U # () begin

First check for propositional unsat (Section 3.3.1)
if prop_trigger(U,P)

if prop_unsat_check(U,P)

SUCCESS, Proof found

c := select(U)
U :=U\ {c}
Apply (RN), (RP), (NS), (PS), (CLC), (DR), (DD), (DE)
simplify(c,P)
Apply (CS), (ES), (TD)
if ¢ is trivial or subsumed by P then

Delete/ignore c
else if ¢ is the empty clause then

Success: Proof found

stop
else

T := () # Temporary clause set

foreach p € P do

if p can be simplified with c

P :=P\ {p}
U :=U \ {dld is direct descendant of p}
T :=TU {p}
done

end

P :=P U {c}

T := T U e-resolvents(c) # (ER)

T := T U e-factors(c) # (EF)

T := T U paramodulants(c,P) # (SN), (SP)

T = {}

foreach p € T do
Apply efficiently implemented subset of (RN),
(RP), (NS), (Ps), (CLC), (DR), (DD), (DE)
p := cheap_simplify(p, P)
Apply (TD) or efficient approximation of it
if p is trivial
Delete/ignore p

else
T’ := T’ U cheap_simplify(p, P)
fi
end
U:=0TUT
fi
end

Failure: 1Initial U is satisfiable, P describes model
Figure 3.1: Main proof procedure of E

16

Chapter 4

Controlling the Proof
Search

This section describes some of the different options available to control the search
of the main proof procedure. The three most important choice points in the
proof search are the choice of term ordering, the selection of the given clause for
any iteration of the main loop, and the (optional) selection of inference literals.
In addition to these major choice points, there are a large number of additional
selections of lesser, but not insigificant importance.

4.1 Search Control Heuristics

Search control heuristics define the order in which the prover considers newly
generated clauses. A heuristic is defined by a set of clause evaluation functions
and a selection scheme which defines how many clauses are selected according
to each evaluation function. A clause evaluation function consists of a priority
function and an instance of a generic weight function.

Priority functions

Priority functions define a partition on the set of clauses. A single clause evalua-
tion consists of a priority (which is the first selection criteria) and an evaluation.
Priorities are usually not suitable to encode heuristic control knowledge, but
rather are used to express certain elements of a search strategy, or to restrict
the effect of heuristic evaluation functions to certain classes of clauses. It is
quite trivial to add a new priority function to E, so at any time there probably
exist a few not yet documented here.

Syntactically, a large subset of currently available priority functions is de-
scribed by the following rule:

<prio-fun> ::= PreferGroundGoals ||

17

PreferUnitGroundGoals ||
PreferGround | |
PreferNonGround | |
PreferProcessed ||
PreferNew ||
PreferGoals ||
PreferNonGoals ||
PreferUnits ||
PreferNonUnits ||
PreferHorn | |
PreferNonHorn | |
ConstPrio ||
ByLiteralNumber ||
ByDerivationDepth ||
ByDerivationSize ||
ByNegLitDist ||
ByGoalDifficulty ||
SimulateS0S| |
PreferHorn]| |
PreferNonHorn| |
PreferUnitAndNonEq| |
DeferNonUnitMaxEq| |
ByCreationDate] |
PreferWatchlist] |
DeferWatchlist

The priority functions are interpreted as follows:

PreferGroundGoals: Always prefer ground goals (all negative clauses without
variables), do not differentiate between all other clauses.

PreferUnitGroundGoals: Prefer unit ground goals.
PreferGround: Prefer clauses without variables.
PreferNonGround: Prefer clauses with variables.

PreferProcessed: Prefer clauses that have already been processed once and
have been eliminated from the set of processed clauses due to interreduc-
tion (forward contraction).

PreferNew: Prefer new clauses, i.e. clauses that are processed for the first time.
PreferGoals: Prefer goals (all negative clauses).

PreferNonGoals: Prefer non goals, i.e. facts with at least one positive literal.
PreferUnits: Prefer unit clauses (clauses with one literal).

PreferNonUnits: Prefer non-unit clauses.

18

PreferHorn: Prefer Horn clauses (clauses with no more than one positive liter-
als).

PreferNonHorn: Prefer non-Horn clauses.
ConstPrio: Assign the same priority to all clauses.

ByLiteralNumber: Give a priority according to the number of literals, i.e. al-
ways prefer a clause with fewer literals to one with more literals.

ByDerivationDepth: Prefer clauses which have a short derivation depth, i.e.
give a priority based on the length of the longest path from the clause to
an axiom in the derivation tree. Counts generating inferences only.

ByDerivationSize: Prefer clauses which have been derived with a small num-
ber of (generating) inferences.

ByNegLitDist: Prefer goals to non-goals. Among goals, prefer goals with fewer
literals and goals with ground literals (more exactly: the priority is in-
creased by 1 for a ground literal and by 3 for a non-ground literal. Clauses
with lower values are selected before clauses with higher values).

ByGoalDifficulty: Prefer goals to non-goals. Select goals based on a simple
estimate of their difficulty: First unit ground goals, then unit goals, then
ground goals, then other goals.

SimulateS0S: Use the priority system to simulate Set-Of-Support. This prefers
all initial clauses and all Set-Of-Support clauses. Some non-SOS-clauses
will be generated, but not selected for processing. This is neither well
tested nor a particularly good fit with E’s calculus, but can be used as
one among many heuristics. If you try a pure SOS strategy, you also should
set —-restrict-literal-comparisons and run the prover without literal
selection enabled.

PreferHorn: Prefer Horn clauses (note: includes units).
PreferNonHorn: Prefer non-Horn clauses.

PreferUnitAndNonEq: Prefer all unit clauses and all clauses without equational
literal. This was an attempt to model some restricted calculi used e.g. in
Gandalf [Tam97], but did not quite work out.

DeferNonUnitMaxEq: Prefer everything except for non-unit clauses with a max-
imal equational literal (“Don’t paramodulate if it is to expensive”). See
above, same result.

ByCreationDate: Return the creation date of the clause as priority. This im-
poses a FIFO equivalence class on clauses. Clauses generated from the
same given clause are grouped together (and can be ordered with any
evaluation function among each other).

19

PreferWatchlist Prefer clauses on the watchlist (see 4.5).

DeferWatchlist Defer clauses on the watchlist (see above).

Please note that careless use of certain priority functions can make the prover
incomplete for the general case.

Generic Weight Functions

Generic weight functions are templates for functions taking a clause and return-
ing a weight (i.e. an estimate of the usefulness) for it, where a lower weight
means that the corresponding clause should be processed before a clause with
a higher weight. A generic weight function is combined with a priority function
and instantiated with a set of parameters to yield a clause evaluation function.

You can specify an instantiated generic weight function as described in this
rule':

<weight-fun> ::= Clauseweight ’(’ <prio-fun> ’, <int>, <int>,
<float> ’)’ |
Refinedweight ’(° <prio-fun> ’, <int>, <int>,

<float>, <float>, <float> ’)’ |
Orientweight ’(’ <prio-fun>, <int>, <int>,
<float>, <float>, <float> ’)’ ||
Simweight ’(’> <prio-fun>, <float>, <float>,
<float>, <float> ’)’ |
FIFOWeight ’(° <prio-fun> ’)’ |
LIFOWeight °>(° <prio-fun> ’)’ |
FunWeight ’(’ <prio-fun> ’, <int>, <int>,
<float>, <float>, <float>
(, <fun> : <posint>)* ’)’ I
SymOffsetWeight ’(’ <prio-fun> ’, <int>, <int>,
<float>, <float>, <float>
(, <fun> : <int>)* ’)?

Clauseweight (prio, fweight, vweight, posmult): This is the basic sym-
bol counting heuristic. Variables are counted with weight vweight, function
symbols with weight fweight. The weight of positive literals is multiplied by
pos_mult before being added into the final weight.

Refinedweight (prio, fweight, vweight, term_pen, lit_pen, pos_mult):
This weight function is very similar to the first one. It differs only in that it
takes the effect of the term ordering into account. In particular, the weight of
a term that is maximal in its literal is multiplied by term_pen, and the weight
of maximal literals is multiplied by lit_pen.

Orientweight(prio, fweight, vweight, term_pen, lit_pen, pos._mult):
This weight function is a slight variation of Refinedweight (). In this case,

INote that there now are many additional generic weight functions not yet documented.

20

the weight of both terms of an unorientable literal is multiplied by a penalty
term_pen.

Simweight (prio, equal_weight, vv_clash, vt_clash, tt_clash): This
weight function is intended to return a low weight for literals in which the
two terms are very similar. It does not currently work very well even for unit
clauses — RTFS (in <che_simweight.c>) to find out more.

FIFOWeight (prio): This weight function assigns weights that increase in a
strictly monotonic manner, i.e. it realizes a first-in/first-out strategy if used all
by itself. This is the most obviously fair strategy.

LIFOWeight (prio): This weight function assigns weights that decrease in a
strictly monotonic manner, i.e. it realizes a last-in/first-out strategy if used all
by itself (which, of course, would be unfair and result in an extremely incomplete
prover).

FunWeight (prio, fweight, vweight, term_pen, lit_pen, pos.mult,
fun:fweight ...): This evaluation function is a variant of Refinedweight.
The first 6 parameter are identical in meaning. The function takes an arbitrary
number of extra parameters of the form fun:fweight, where fun is any valid
function symbol, and fweight is a non-negative integer. The extra weight
assignments will overwrite the default weight for the listed function symbol.

SymOffsetWeight (prio, fweight, vweight, term_pen, lit_pen,
posmult, fun:fweight ...): This evaluation function is similar to
FunWeight. The first 6 parameter are identical in meaning. The extra
arguments allow both positive and negative values, and are used as once-off
weight modifiers added to the weight of all clauses that contain the defined
symbol.

Clause Evaluation Functions

A clause evaluation function is constructed by instantiating a generic weight
function. It can either be specified directly, or specified and given a name for
later reference at once:

<eval-fun> ::= <ident> |
<weight-fun> [l
<eval-fun-def>

<eval-fun-def> ::= <ident> = <weight-fun>

<eval-fun-def-list> ::= <eval-fun-def>x*

Of course a single identifier is only a valid evaluation function if it has been
previously defined in a <eval-fun-def>. It is possible to define the value of
an identifier more than once, in which case later definitions take precedence to
former ones.

Clause evaluation functions can be be defined on the command line with the
-D (--define-weight-function) option, followed by a <eval-fun-def-list>.

21

Ezxample:

eprover -D"exl=Clauseweight(ConstPrio,2,1,1) \

ex2=FIFOWeight (PreferGoals)"

sets up the prover to know about two evaluation function ex1 and ex2
(which supposedly will be used later on the command line to define one or
more heuristics). The double quotes are necessary because the brackets
and the commas are special characters for most shells

There are a variety of clause evaluation functions predefined in the variable
DefaultWeightFunctions, which can be found in che_proofcontrol.c. See
also sections 4.5 and 4.6, which cover some of the more complex weight functions

of E.

Heuristics

A heuristic defines how many selections are to be made according to one of
several clause evaluation functions. Syntactically,

<heu-element>
<heuristic>

<heuristic-def> ::

<int> ’*’ <eval-fun>

> (’ <heu-element> (,<heu-element>)*)’ ||
<ident>

<ident> = <heuristic> ||

<heuristic>

As above, a single identifier is only a valid heuristic if it has been defined in
<heuristic-def> previously. A <heuristic-def> which degenerates to a sim-
ple heuristic defines a heuristic with name Default (which the prover will auto-
matically choose if no other heuristic is selected with -x (-—expert-heuristic).

Ezxample: To continue the above example,

eprover -D"exl=Clauseweight(ConstPrio,2,1,1) \

ex2=FIFOWeight (PreferGoals)"

-H"new=(3*%ex1,1*ex2)" \
-x new LUSK3.lop

will run the prover on a problem file named LUSK3.lop with a heuristic
that chooses 3 out of every 4 clauses according to a simple symbol count-
ing heuristic and the last clause first among goals and then among other
clauses, selecting by order of creation in each of these two classes.

22

4.2 Term Orderings

E currently supports two families of orderings: The Knuth-Bendiz-Ordering
(KBO), which is used by default, and the Lexicographical Path Ordering (LPO).
The KBO is weight-based and uses a precedence on function symbols to break
ties. Consequently, to specify a concrete KBO, we need a weight function that
assigns a weight to all function symbols, and a precedence on those symbols.

The LPO is based on a lexicographic comparison of symbols and subterms,
and is fully specified by giving just a precedence.

Currently it is possible to explicitly specify an arbitrary (including incom-
plete or empty) precedence, or to use one of several precedence generating
schemes. Similarly, there is a number of predefined weight functions and the
ability to assign arbitrary weights to function and predicate symbols.

The simplest way to get a reasonable term ordering is to specify automatic
ordering selection using the -tAuto option.

Options controlling the choice of term ordering:

23

-term-ordering=<arg>

-t<arg> Select a term ordering class (or automatic selection). Sup-
ported arguments are at least LPO, LP04 (for a much faster new
implementation of LPO), KBO, and Auto. If Auto is selected,
all aspects of the term ordering are fixed, and additional op-
tions about the ordering will be (or at least should be) silently
ignored.

--order-precedence-generation=<arg>
-G <arg> Select a precedence generation scheme (see below).

--order-weight-generation=<arg>
-w <arg> Select a symbol weight function (see below).

--order-constant-weight=<arg>
-c <arg> Modify any symbol weight function by assigning a special
weight to constant function symbols.

--precedence [=<arg>]
Describe a (partial) precedence for the term ordering. The ar-
gument is a comma-separated list of precedence chains, where
a precedence chain is a list of function symbols (which all
have to appear in the proof problem), connected by >, <, or
= (to denote equivalent symbols). If this option is used in
connection with --order-precedence-generation, the par-
tial ordering will be completed using the selected method,
otherwise the prover runs with a non-ground-total ordering.
The option without the optional argument is equivalent to
--precedence= (the empty precedence). There is a drawback
to using --precedence: Normally, total precedences are rep-
resented by mapping symbols to a totally ordered set (small
integers) which can be compared using standard machine in-
structions. The used data structure is linear in the number n
of function symbols. However, if —-precedence is used, the
prover allocates (and completes) a n x n lookup table to effi-
ciently represent an arbitrary partial ordering. If n is very big,
this matrix takes up significant space, and takes a long time
to compute in the first place. This is unlikely to be a problem
unless there are at least hundreds of symbols.

--order-weights=<arg>
Give explicit weights to function symbols. The argument syn-
tax is a comma-separated list of items of the form f:w, where
f is a symbol from the specification, and w is a non-negative
integer. Note that at best very simple checks are performed,
so you can specify weights that do not obey the KBO weight
constraints. Behaviour in this case is undefined. If all your
weights are positive, this is unlikely to happen.
Since KBO needs a total weight function, E always uses a
weight generation scheme in addition to the user-defined op-
tions. You may want to use -wconstant for predictable
behaviour. 24

—--lpo-recursion-limit [=<arg>]

Limits the recursion depth of LPO comparison. This is useful
in rare cases where very large term comparisons can lead to
stack overflow issues. It does not change completeness, but
may lead to unnecessary inferences in rare cases (Note: By
default, recursion depth is limited to 1000. To get effectively
unlimited recursion depth, use this option with an outrageously
large argument. Don’t forget to increase process stack size with
limit/ulimit from your favourite shell).

4.2.1 Precedence Generation Schemes

Precedence generation schemes are based on syntactic features of the sym-
bol and the input clause set, like symbol arity or number of occurrences in
the formula. At least the following options are supported as argument to
--order-precedence-generation:

unary_first: Sort symbols by arity, with the exception that unary symbols
come first. Frequency is used as a tie breaker (rarer symbols are greater).

unary_freq: Sort symbols by frequency (rarer symbols are bigger), with the
exception that unary symbols come first. Yes, this should better be named
unary_invfreq for consistency, but is not. ..

arity: Sort symbols by arity (symbols with higher arity are larger).
invarity: Sort symbols by arity (symbols with higher arity are smaller).

const_max: Sort symbols by arity (symbols with higher arity are larger), but
make constants the largest symbols. This is allegedly used by SPASS [Wei01]
in some configurations.

const_min: Sort symbols by arity (symbols with higher arity are smaller), but
make constants the smallest symbols. Provided for reasons of symmetry.

freq: Sort symbols by frequency (frequently occurring symbols are larger). Ar-
ity is used as a tie breaker.

invfreq: Sort symbols by frequency (frequently occurring symbols are smaller).
In our experience, this is one of the best general-purpose precedence gen-
eration schemes.

invfreqconstmin: Same as invfreq, but make constants always smaller than
everything else.

invfreqhack: As invfreqconstmin, but unary symbols with maximal frequency
become largest.

25

4.2.2 Weight Generation Schemes

Weight generation schemes are based on syntactic features of the symbol and
the input clause set, or on the predefined precedence. The following options are
available for -—order-weight-generation.

firstmaximalO: Give the same arbitrary (positive) weight to all function sym-
bols except to the first maximal one encountered (order is arbitrary),
which is given weight 0.

arity: Weight of a function symbol f|, is n + 1, i.e. its arity plus one.
aritymax0: As arity, except that the first maximal symbol is given weight 0.

modarity: Weight of a function symbol f|,, is n+c, where c is a positive constant
(W_TO_BASEWEIGHT, which has been 4 since the dawn of time).

modaritymax0: As modarity, except that the first maximal symbol is given
weight 0.

aritysquared: Weight of a symbol f|,, is n? + 1.

aritysquaredmax0: As aritysquared, except that the first maximal symbol is
given weight 0.

invarity: Let m be the largest arity of any symbol in the signature. Weight
of a symbol f|, is m —n + 1.

invaritymaxO: As invarity, except that the first maximal symbol is given
weight 0.

invaritysquared: Let m be the largest arity of any symbol in the signature.
Weight of a symbol f|, is m? —n? + 1.

invaritysquaredmax0: As invaritysquared, except that the first maximal
symbol is given weight 0.

precedence: Let < be the (pre-determined) precedence on function symbols F'
in the problem. Then the weight of f is given by |[{glg < f}| + 1 (the
number of symbols smaller than f in the precedence increased by one).

invprecedence: Let < be the (pre-determined) precedence on function symbols
F in the problem. Then the weight of f is given by |g|f < g| + 1 (the
number of symbols larger than f in the precedence increased by one).

freqcount: Make the weight of a symbol the number of occurrences of that
symbol in the (potentially preprocessed) input problem.

invfreqcount: Let m be the number of occurrences of the most frequent symbol
in the input problem. The weight of f is m minus he number of occurrences
of f in the input problem.

26

freqrank: Sort all function symbols by frequency of occurrence (which induces
a total quasi-ordering). The weight of a symbol is the rank of it’s equiva-
lence class, with less frequent symbols getting lower weights.

invfreqgrank: Sort all function symbols by frequency of occurrence (which in-
duces a total quasi-ordering). The weight of a symbol is the rank of its
equivalence class, with less frequent symbols getting higher weights.

freqranksquare: As freqrank, but weight is the square of the rank.
invfreqranksquare: As invfreqrank, but weight is the square of the rank.

invmodfreqrank: Sort all function symbols by frequency of occurrence (which
induces a total quasi-ordering). The weight of an equivalence class is the
sum of the cardinality of all smaller classes (+1). The weight of a symbol
is the weight of its equivalence classes. Less frequent symbols get higher
weights.

invmodfreqrankmax0: As invmodfreqrank, except that the first maximal sym-
bol is given weight 0.

constant: Give the same arbitrary positive weight to all function symbols.

4.2.3 Literal Comparison

By default, literals are compared as multisets of terms, as described in [BG94].
However, E also supports other ways to identify maximal literals, both weaker
and potentially stronger.

The option --restrict-literal-comparisons makes all literals incompa-
rable, i.e. all literals are potential inference literals (unless literal selection is
activated - see 4.3. This will e.g. make the set-of-support strategy complete
for the non-equational case. It may also make some proofs easier to find. On
average, however, this can be expected to decrease performance.

The option --literal-comparison=<arg> allow the user to select alterna-
tive literal comparison schemes. In particular, literals will be first compared by
predicate symbol, and only then by full terms. This is a poor man’s version of
transfinite KBO [LW07, KMV11], applied to literals only, but also extended to
LPO. The argument can currently be:

None: This is equivalent to the older option --restrict-literal-comparisons
described above.

Normal: This is the default, with literals being compared as multi-sets of the
two terms of the (in E always) equational literal.

TFOEgMax: This compares literals by predicate symbol first, and only in the
case of a tie by the multiset comparison of the two terms. In E, literals
are always encoded as equational, but non-equational literals are marked
accordingly. For TFOEqMax, equational literals are always larger than non-
equational literals.

27

TFOEgMin: See the previous option. The only difference is that equational lit-
erals are always smaller than non-equational literals.

4.3 Literal Selection Strategies

The superposition calculus allows the selection of arbitrary negative literals
in a clause and only requires generating inferences to be performed on these
literals. E supports this feature and implements it via manipulations of the
literal ordering. Additionally, E implements strategies that allow inferences into
maximal positive literals and selected negative literals. A selection strategy is
selected with the option --literal-selection-strategy. Currently, at least
the following strategies are implemented:

NoSelection: Perform ordinary superposition without selection.

NoGeneration: Do not perform any generating inferences. This strategy is not
complete, but applying it to a formula generates a normal form that does
not, contain any tautologies or redundant clauses.

SelectNegativeLiterals: Select all negative literals. For Horn clauses, this
implements the maximal literal positive unit strategy [Der91] previously
realized separately in E.

SelectPureVarNegLiterals: Select the first negative literal of the form X ~Y.

SelectLargestNegLit: Select the largest negative literal (by symbol counting,
function symbols count as 2, variables as 1).

SelectSmallestNegLit: As above, but select the smallest literal.

SelectDiffNegLit: Select the negative literal in which both terms have the
largest size difference.

SelectGroundNegLit: Select the first negative ground literal for which the size
difference between both terms is maximal.

SelectOptimalLit: If there is a ground negative literal, select as in the case of
SelectGroundNegLit, otherwise as in SelectDiffNegLit.

Each of the strategies that do actually select negative literals has a corre-
sponding counterpart starting with P that additionally allows paramodulation
into maximal positive literals?.

Example: Some problems become a lot simpler with the correct strategy. Try
e.g.

2Except for SelectOptimalLit, where the resulting strategy, PSelectOptimalLit will allow
paramodulation into positive literals only if no ground literal has been selected.

28

eprover --literal-selection-strategy=NoSelection \
GRPOO1-1+rm_eq_rstfp.lop

eprover --literal-selection-strategy=SelectLargestNegLit \
GRPOO1-1+rm_eq_rstfp.lop

You will find the file GRPOO1-1+rm_eq-rstfp.lop in the E/PROVER direc-
tory.

As we aim at replacing the vast number of individual literal selection func-
tions with a more abstract mechanism, we refrain from describing all of the cur-
rently implemented functions in detail. If you need information about the set
of implemented functions, run eprover -W none. The individual functions are
implemented and somewhat described in E/HEURISTICS/che_litselection.h.

4.4 Controling Propositional Reasoning

E now integrates the CDCL SAT solver (see section 3.3.1. Support for SAT
checking is, so far, only marginally integrated into the automatic mode, but can
be controlled by the user via the following command line options.
--satcheck-proc-interval [=<arg>]
Enable periodic SAT checking at the given interval of main loop
non-trivial processed clauses.
--satcheck-gen-interval [=<arg>]
Enable periodic SAT checking whenever the total proof state
size increases by the given limit.
--satcheck-ttinsert-interval [=<arg>]
Enable periodic SAT checking whenever the number of term
tops insertions matches the given limit (which grows exponen-
tially).
--satcheck[=<arg>]
Set the grounding strategy for periodic SAT checking. Note that
to enable SAT checking, it is also necessary to set the interval
with one of the previous two options.
--satcheck-decision-limit [=<arg>]
Set the number of decisions allowed for each run of the SAT
solver. If the option is not given, the built-in value is 10000.
Use -1 to allow unlimited decision.
--satcheck-normalize-const
Use the current normal form (as recorded in the termbank
rewrite cache) of the selected constant as the term for the
grounding substitution.
--satcheck-normalize-unproc
Enable re-simplification (heuristic re-revaluation) of unpro-
cessed clauses before grounding for SAT checking.

29

4.5 The Watchlist Feature

Since public release 0.81, E supports a watchlist. A watchlist is a user-defined set
of clauses. Whenever the prover encounters® a clause that subsumes one or more
clauses from the watchlist, those clauses are removed from it. The saturation
process terminates if the watchlist is empty (or, of course, if a saturated state
or the empty clause have been reached).

There are two uses for a watchlist: To guide the proof search (using a heuris-
tic that prefers clauses on the watchlist), or to find purely constructive proofs
for clauses on the watchlist.

If you want to guide the proof search, place clauses you believe to be im-
portant lemmata onto the watchlist. Also include the empty clause to make
sure that the prover will not terminate prematurely. You can then use a clause
selection heuristic that will give special consideration to clauses on the watch-
list. This is currently supported via the priority functions PreferWatchlist
and DeferWatchlist. A clause evaluation function using PreferWatchlist
will always select clauses which subsume watchlist clauses first. Similarly, using
DeferWatchlist can be used to put the processing of watchlist clauses off.

There is a predefined clause selection heuristic UseWatchlist (select it with
-xUseWatchlist) that will make sure that watchlist clauses are selected rela-
tively early. It is a strong general purpose heuristic, and will maintain com-
pleteness of the prover. This should allow easy access to the watchlist feature
even if you don’t yet feel comfortable with specifying your own heuristics.

To generate constructive proofs of clauses, just place them on the watch list
and select output level 4 or greater (see section 6.3). Steps affecting the watch
list will be marked in the PCL2 output file. If you use the eproof script for
proof output or run epclextract on your own, subproofs for watchlist steps will
be automatically extracted.

Note that this forward reasoning is not complete, i.e. the prover may never
generate a given watchlist clause, even if it would be trivial to prove it via
refutation.

Options controlling the use of the watch list:

--watchlist=<arg> Select a file containing the watch list
clauses. Syntax should be the same
syntax as your proof problem (E-LOP,
TPTP-1/2 or TPTP-3/TSTP). Just
write down a list of clauses and/or for-
mulas.

—--no-watchlist-simplification By default, watch list clauses are sim-
plified with respect to the current set
P. Use this option to disable the fea-
ture.

3Clauses are checked against the watchlist after normalization, both when they are inserted
into U or if they are selected for processing.

30

4.6 Learning Clause Evaluation Functions

E can use a knowledge base generated by analyzing many successful proof at-
tempts to guide its search, i.e. it can learn what kinds of clauses are likely to be
useful for a proof and which ones are likely superfluous. The details of the learn-
ing mechanism can be found in [Sch00, Sch01]. Essentially, an inference protocol
is analyzed, useful and useless clauses are identified and generalized into clause
patterns, and the resulting information is stored in a knowledge base. Later,
new clauses that match a pattern are evaluated accordingly.

Creating Knowledge Bases

An E knowledge base is a directory containing a number of files, storing both
the knowledge and configuration information. Knowledge bases are generated
with the tool ekb_create. If no argument is given, ekb_create will create a
knowledge base called E_KNOWLEDGE in the current directory.

You can run ekb_create -h for more information about the configuration.
However, the defaults are usually quite sufficient.

Populating Knowledge Bases

The knowledge base contains information gained from clausal PCL2 protocols
of E. In a first step, information from the protocol is abstracted into a more
compact form. A number of clauses is selected as training examples, and anno-
tations about their role are computed. The result is a list of annotated clauses
and a list of the axioms (initial clauses) of the problem. This step can be
performed using the program direct,exa.mpleS4.

In a second step, the collected information is integrated into the knowledge
base. For this purpose, the program ekb_insert can be used. However, it is
probably more convenient to use the single program ekb_ginsert, which directly
extracts all pertinent information from a PCL2 protocol and inserts it into a
designated knowledge base.

The program ekb_delete will delete an example from a knowledge base.
This process is not particularly efficient, as the whole knowledge base is first
parsed.

Using Learned Knowledge

The knowledge in a knowledge base can be utilized by the two clause evalu-
ation functions TSMWeight() and TSMRWeight (). Both compute a modifica-
tion weight based on the learned knowledge, and apply it to a conventional
symbol-counting base weight (similar to Clauseweight () for TSMWeight () and
Refinedweight () for TSMWeight (). An example command line is:
eprover -x’(1xTSMWeight (ConstPrio, 1, 1, 2, flat, E_KNOWLEDGE,
100000,1.0,1.0,Flat, IndexIdentity,100000,-20,20,-2,-1,0,2))’

4The name is an historical accident and has no significance anymore

31

There are also two fully predefined learning clause selection heuristics. Se-
lect them with -xUseTSM1 (for some influence of the learned knowledge) or
-xUseTSM2 (for a lot of influence of the learned knowledge).

4.7 Other Options

TBC - run eprover --help for a short overview.

32

Chapter 5
Input Language

E supports three different input formats and two different output formats. If
no particular format is explicitly requested, E will determine the input format
based on the first tokens of the input file and also select a matching output
format.

5.1 LOP

E originally used E-LOP, a dialect of the LOP language designed for SETHEQ.
At the moment, your best bet is to retrieve the LOP description from the E web
site [Sch16] and/or check out the examples available from it. LOP is very close
to Prolog, and E can usually read many fully declarative Prolog files if they do
not use arithmetic or rely on predefined symbols. Plain SETHEO files usually
also work very well. There are a couple of minor differences, however:

e equal() is an interpreted symbol for E. It normally does not carry any
meaning for SETHEO (unless equality axioms are added).

e SETHEO allows the same identifier to be used as a constant, a non-
constant function symbol and a predicate symbol. E encodes all of these
as ordinary function symbols, and hence will complain if a symbol is used
inconsistently.

e E allows the use of = as an infix symbol for equality. a=b is equivalent to
equal(a,b) for E.

e E does not support constraints or SETHEO built-in symbols. This should
not usually affect pure theorem proving tasks.

e E normally treats procedural clauses exactly as it treats declarative clauses.
Query clauses (clauses with an empty head and starting with ?-, e.g.
7-~p(X), q(X). can optionally be used to define the a set of goal clauses

33

(by default, all negative clauses are considered to be goals). At the mo-
ment, this information is only used for the initial set of support (with
--sos-uses-input-types). Note that you can still specify arbitrary
clauses as query clauses, since LOP supports negated literals.

5.2 TPTP-2 and TPTP-3 Formats

The TPTP [Sut09] is a library of problems for automated theorem prover. Prob-
lems in the TPTP are written in TPTP syntax. There are two major versions
of the TPTP syntax, both of which are supported by E.

Version 2! of the TPTP syntax was used up for TPTP releases previous to
TPTP 3.0.0. The current version 3 of the TPTP syntax, described in [SSCGO06],
covers both input problems and both proof and model output using one consis-
tent formalism. It has been used as the native format for TPTP releases since
TPTP 3.0.0.

Parsing in TPTP format version 2 is enabled by the options --tptp-in,
tptp2-in, —-tptp-format and --tptp2-format. The last two options also se-
lect TPTP 2 format for the output of normal clauses during and after saturation.
Proof output will be in PCL2 format, however.

TPTP syntax version 3 [SSCG06, SSCB12] is the currently recommended for-
mat. It is supported by many provers, it is more consistent than the old TPTP
language, and it adds a number of useful features. E supports TPTP-3 syntax
with the options --tstp-in , tptp3-in, --tstp-format and --tptp3-format.
The last two options will also enable TPTP-3 format for proof output. Note
that many of E’s support tools still require PCL2 format. Various tools for
processing TPTP-3 proof format are available via the TPTP web-site, http:
//www.tptp.org.

In either TPTP format, clauses and formulas with TPTP type conjecture,
negated_conjecture, or question (the last two in TPTP-3 only) are considered
goal clauses for the ——sos-uses-input-types option.

5.3 Lambda-free higher-order extension

As part of the ongoing Matryoshka project (http://matryoshka.gforge.inria.
fr/) E has been extended to optionally support lambda-free higher-order logic
(LFHOL). The option can be enabled at compile time by passing --enable-ho
to the configure script.

In this section we give a very short introduction to LFHOL syntax and se-
mantics. Detailed description (which includes semantics) can be found in a pa-
per by Bentkamp, Blanchette, Cruanes, and Waldmann [BBCW18], available at
http://matryoshka.gforge.inria.fr/pubs/1fhosup_report.pdf. The im-
plementation is described in [VBCS19, VBCS18].

IVersion 1 allowed the specification of problems in clause normal form only. Version 2 is a
conservative extension of version 1 and adds support for full first order formulas.

34

LFHOL extends FOL by allowing partial appliciation of function symbols as
well as application of variables to other terms. Unlike other HOLSs, there is no
comprehension principle, and boolean formulae can only appear as atoms (not
as arguments to other symbols). Quantification over booleans is not allowed.
LFHOL is simply typed — each type i