DR_eq_DC_or_EC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "DR_eq_DC_or_EC", "DR_def", "DC_def", "O_impl_C", "EC_def" Prover: SPASS PP_eq_TPP_or_NTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "PP_eq_TPP_or_NTPP", "NTPP_def", "ga_non_empty_sort_Reg", "TPP_def" Prover: SPASS PPi_eq_TPPi_or_NTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "PPi_eq_TPPi_or_NTPPi", "PPi_def", "NTPPi_def", "TPPi_def", "PP_eq_TPP_or_NTPP" Prover: SPASS ?_RCC8 Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "?_RCC8", "?_RCC5", "?_RCC8_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "?_RCC5_def" Prover: SPASS ?_RCC5_RCC8 Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "?_RCC5_RCC8", "?_RCC5", "?_RCC8" Prover: SPASS sym_DC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "sym_DC", "DC_def", "C_sym" Prover: SPASS sym_EC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "sym_EC", "C_sym", "sym_DR", "EC_def", "DR_eq_DC_or_EC", "DC_def" Prover: SPASS disj_DC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_DC", "Ax1", "DR_def", "O_impl_C", "P_impl_O", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_DR", "EC_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "disj_DR", "DC_def", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS disj_EC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_EC", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_EC", "disj_DR", "EC_def", "disj_DC" Prover: SPASS disj_TPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_TPP", "TPP_def", "ga_non_empty_sort_Reg", "P_impl_O", "O_sym", "PPi_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "DR_def", "disj_PP", "disj_PO", "disj_EC", "NTPP_def" Prover: SPASS disj_NTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_NTPP", "PPi_def", "sym_PO", "NTPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "disj_PP", "disj_PO", "disj_DC", "disj_EC", "disj_TPP" Prover: SPASS disj_TPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_TPPi", "EQ_def", "sym_PO", "NTPPi_def", "TPPi_def", "sym_EC", "disj_DC", "disj_TPP", "disj_NTPP" Prover: SPASS disj_NTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_NTPPi", "EQ_def", "sym_PO", "NTPPi_def", "disj_DC", "disj_EC", "disj_TPP", "disj_NTPP", "disj_TPPi" Prover: SPASS cmps_DCDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCDC", "?_RCC8" Prover: SPASS cmps_DCEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCEC", "?_RCC5", "EQ_def", "PPi_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "EC_def", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "DC_def", "disj_EC", "PP_eq_TPP_or_NTPP", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_DCPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCPO", "?_RCC5", "C_sym", "O_impl_C", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "DC_def", "disj_DC", "PP_eq_TPP_or_NTPP", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_DCTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCTPP", "?_RCC5", "O_impl_C", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "DR_def", "DC_def", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_DCNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCNTPP", "?_RCC5", "O_impl_C", "P_impl_O", "EQ_def", "PPi_def", "PP_def", "sym_PO", "sym_DR", "NTPPi_def", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "DC_def", "disj_NTPPi", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_DCTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCTPPi", "DC_def", "P_impl_O", "PP_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "disj_TPP", "PO_def", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_DCNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DCNTPPi", "DC_def", "PPi_def", "PP_def", "PPi_eq_TPPi_or_NTPPi", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_ECDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECDC", "?_RCC5", "C_sym", "EQ_def", "PP_def", "EC_def", "sym_DC", "DC_def", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_ECEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECEC", "?_RCC5", "NTPPi_def", "sym_EC", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "NTPP_def", "ga_non_empty_sort_Reg", "?_RCC5_def" Prover: SPASS cmps_ECPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECPO", "?_RCC5", "EQ_def", "PPi_def", "PO_def", "sym_PO", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "sym_EC", "DR_def", "PP_eq_TPP_or_NTPP", "cmps_PPDR", "cmps_EQDR", "?_RCC5_def" Prover: SPASS cmps_ECTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECTPP", "?_RCC5", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "EC_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "DR_def", "DC_def", "disj_TPP", "PO_def", "cmps_PPDR", "cmps_EQDR", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_ECNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECNTPP", "?_RCC5", "DC_def", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_PO", "TPPi_def", "EC_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "DR_def", "disj_PP", "disj_NTPP", "PO_def", "cmps_PPDR", "cmps_EQDR", "P_def", "ga_non_empty_sort_QReg", "NTPP_def", "ga_non_empty_sort_Reg", "?_RCC5_def" Prover: SPASS cmps_ECTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECTPPi", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "cmps_DRPPi" Prover: SPASS cmps_ECNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_ECNTPPi", "Ax1", "DR_def", "DC_def", "P_impl_O", "O_sym", "PPi_def", "PP_def", "sym_DR", "NTPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "PO_def", "EC_def", "cmps_PPDR", "P_inh_O", "NTP_def", "ga_non_empty_sort_QReg", "NTPP_def", "ga_non_empty_sort_Reg" Prover: SPASS cmps_PODC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PODC", "?_RCC5", "O_impl_C", "O_sym", "EQ_def", "PO_def", "PP_def", "sym_DC", "DC_def", "disj_DC", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "cmps_EQPO", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_POEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POEC", "?_RCC5", "O_sym", "PO_def", "PP_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "sym_EC", "DR_def", "PPi_eq_TPPi_or_NTPPi", "cmps_EQDR", "P_inh_O", "?_RCC5_def" Prover: SPASS cmps_POTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POTPP", "P_impl_O", "O_sym", "PO_def", "PP_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "DR_def", "disj_PP", "disj_PO", "cmps_PP", "P_inh_O", "cmps_PPPO" Prover: SPASS cmps_PONTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PONTPP", "?_RCC5", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PO_def", "PP_def", "NTPPi_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "DR_def", "disj_PP", "disj_PO", "disj_NTPPi", "P_inh_O", "?_RCC5_def", "cmps_PPPO" Prover: SPASS cmps_POTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POTPPi", "?_RCC5", "EQ_def", "PPi_def", "TPPi_def", "disj_TPP", "disj_TPPi", "disj_NTPPi", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "cmps_PPiPO", "?_RCC5_def" Prover: SPASS cmps_PONTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PONTPPi", "TPP_def", "ga_non_empty_sort_Reg", "?_RCC5", "?_RCC8", "P_impl_O", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_PO", "NTPPi_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "disj_PP", "disj_EC", "disj_NTPP", "disj_NTPPi", "DR_eq_DC_or_EC", "cmps_ECNTPPi", "cmps_PP", "P_inh_O", "cmps_PPiPO", "?_RCC5_def", "?_RCC8_def" Prover: SPASS cmps_TPPDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPDC", "DC_def", "C_sym", "P_impl_O", "PP_def", "PP_eq_TPP_or_NTPP", "sym_DC", "disj_TPP", "PO_def", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_TPPEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPEC", "sym_DR", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "sym_EC", "cmps_PPDR" Prover: SPASS cmps_TPPPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPPO", "?_RCC5", "PPi_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "PO_def", "DR_eq_DC_or_EC", "cmps_PPPP", "cmps_EQPP", "?_RCC5_def" Prover: SPASS cmps_TPPTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPTPP", "PP_eq_TPP_or_NTPP", "cmps_PPPP" Prover: SPASS cmps_TPPNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPNTPP", "TPP_def", "ga_non_empty_sort_Reg", "DC_def", "P_impl_O", "O_sym", "PPi_def", "PP_def", "sym_EC", "sym_DC", "NTPPi_def", "TPPi_def", "NTPP_def", "P_def", "ga_non_empty_sort_QReg", "PO_def", "disj_PP", "disj_PO", "disj_TPPi", "disj_NTPP", "disj_TPP", "disj_EC", "disj_DC", "PPi_eq_TPPi_or_NTPPi", "PP_eq_TPP_or_NTPP", "cmps_ECNTPPi", "cmps_TPPDC", "cmps_PPPP", "P_inh_O", "cmps_ECNTPP", "cmps_POTPP", "cmps_PONTPP" Prover: SPASS cmps_TPPTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPTPPi", "?_RCC5", "EQ_def", "PPi_def", "sym_PO", "sym_DR", "NTPPi_def", "TPPi_def", "disj_TPPi", "disj_TPP", "PPi_eq_TPPi_or_NTPPi", "DR_eq_DC_or_EC", "cmps_TPPiNTPPi", "?_RCC5_def" Prover: SPASS cmps_TPPNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPNTPPi", "?_RCC5", "P_impl_O", "EQ_def", "PPi_def", "PP_def", "PPi_eq_TPPi_or_NTPPi", "NTPPi_def", "DR_def", "disj_PP", "disj_NTPP", "disj_TPP", "PP_eq_TPP_or_NTPP", "DR_eq_DC_or_EC", "cmps_TPPNTPP", "cmps_NTPPNTPP", "cmps_TPPiNTPPi", "?_RCC5_def" Prover: SPASS cmps_NTPPDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPDC", "DC_def", "C_sym", "PP_def", "PP_eq_TPP_or_NTPP", "sym_DC", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_NTPPEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPEC", "EQ_def", "PPi_def", "sym_EQ", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_EC", "disj_DR", "disj_EC", "cmps_PPDR", "cmps_TPPEC", "cmps_ECNTPP" Prover: SPASS cmps_NTPPPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPPO", "?_RCC5", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_PO", "sym_DR", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_EC", "P_def", "ga_non_empty_sort_QReg", "disj_NTPP", "cmps_PP", "P_inh_O", "?_RCC5_def" Prover: SPASS cmps_NTPPTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPTPP", "?_RCC5", "DC_def", "P_impl_O", "PPi_def", "PP_def", "sym_PO", "PPi_eq_TPPi_or_NTPPi", "TPPi_def", "NTPP_def", "ga_non_empty_sort_Reg", "TPP_def", "disj_PP", "disj_PO", "disj_TPP", "disj_EC", "disj_DC", "PP_eq_TPP_or_NTPP", "DR_eq_DC_or_EC", "PO_def", "cmps_TPPNTPP", "cmps_NTPPNTPP", "cmps_PPPP", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def", "cmps_TPPiNTPP" Prover: SPASS cmps_NTPPNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPNTPP", "TPP_def", "ga_non_empty_sort_Reg", "?_RCC5", "DC_def", "C_non_null", "P_impl_O", "O_sym", "PPi_def", "PP_def", "NTPPi_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "DR_def", "PO_def", "disj_PO", "disj_EC", "disj_TPP", "disj_NTPP", "disj_NTPPi", "cmps_NTPPDC", "cmps_ECNTPPi", "cmps_PPPP", "cmps_PP", "NTP_def", "ga_non_empty_sort_QReg", "?_RCC5_def", "cmps_ECNTPP" Prover: SPASS cmps_NTPPTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPTPPi", "?_RCC5", "EQ_def", "NTPPi_def", "TPPi_def", "disj_TPP", "PPi_eq_TPPi_or_NTPPi", "PP_eq_TPP_or_NTPP", "DR_eq_DC_or_EC", "cmps_TPPNTPP", "cmps_NTPPNTPP", "?_RCC5_def" Prover: SPASS cmps_NTPPNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPNTPPi", "?_RCC8" Prover: SPASS cmps_TPPiDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiDC", "?_RCC5", "DC_def", "C_sym", "C_non_null", "EQ_def", "PPi_def", "PP_def", "PPi_eq_TPPi_or_NTPPi", "disj_TPPi", "DR_eq_DC_or_EC", "cmps_EQPPi", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_TPPiEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiEC", "?_RCC5", "DC_def", "C_sym", "PPi_def", "PP_def", "EC_def", "DR_eq_DC_or_EC", "PPi_eq_TPPi_or_NTPPi", "sym_DC", "sym_EC", "disj_DR", "cmps_PPDR", "cmps_EQDR", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_TPPiPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiPO", "?_RCC5", "PPi_def", "PO_def", "PP_def", "sym_PO", "PPi_eq_TPPi_or_NTPPi", "DR_def", "disj_PO", "disj_TPPi", "cmps_PPPP", "cmps_EQPO", "P_inh_O", "?_RCC5_def" Prover: SPASS cmps_TPPiTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiTPP", "?_RCC5", "P_impl_O", "PPi_def", "PP_def", "PPi_eq_TPPi_or_NTPPi", "NTPPi_def", "TPPi_def", "TPP_def", "ga_non_empty_sort_Reg", "DR_def", "disj_TPPi", "PP_eq_TPP_or_NTPP", "cmps_TPPNTPP", "cmps_NTPPiTPPi", "P_inh_O", "?_RCC5_def" Prover: SPASS cmps_TPPiNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiNTPP", "TPP_def", "ga_non_empty_sort_Reg", "?_RCC5", "DC_def", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_PO", "PPi_eq_TPPi_or_NTPPi", "DR_eq_DC_or_EC", "NTPPi_def", "TPPi_def", "NTPP_def", "P_def", "ga_non_empty_sort_QReg", "DR_def", "PO_def", "disj_PP", "disj_PO", "disj_DR", "disj_NTPPi", "disj_TPPi", "disj_NTPP", "disj_TPP", "disj_EC", "PP_eq_TPP_or_NTPP", "cmps_TPPNTPP", "cmps_TPPiNTPPi", "cmps_NTPPiNTPPi", "cmps_PPPP", "cmps_PP", "P_inh_O", "NTP_def", "?_RCC5_def", "cmps_ECNTPP", "cmps_PONTPP" Prover: SPASS cmps_TPPiTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiTPPi", "PPi_def", "TPPi_def", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "cmps_PPPP" Prover: SPASS cmps_TPPiNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_TPPiNTPPi", "TPP_def", "ga_non_empty_sort_Reg", "P_impl_O", "PPi_def", "PP_def", "NTPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "P_def", "ga_non_empty_sort_QReg", "PO_def", "disj_EC", "cmps_ECNTPPi", "cmps_DCNTPPi", "cmps_PPPP", "cmps_DRPPi", "P_inh_O" Prover: SPASS cmps_NTPPiDC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiDC", "?_RCC5", "DC_def", "C_sym", "C_non_null", "EQ_def", "PPi_def", "PP_def", "PPi_eq_TPPi_or_NTPPi", "disj_NTPPi", "DR_eq_DC_or_EC", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_NTPPiEC Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiEC", "?_RCC5", "DC_def", "C_sym", "PP_def", "NTPPi_def", "EC_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "sym_DC", "sym_EC", "disj_EC", "disj_NTPPi", "PPi_eq_TPPi_or_NTPPi", "cmps_TPPiNTPPi", "cmps_ECNTPPi", "cmps_PPDR", "cmps_EQDR", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_NTPPiPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiPO", "?_RCC5", "O_impl_C", "O_sym", "EQ_def", "PO_def", "PP_def", "sym_PO", "sym_DR", "NTPPi_def", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "DR_def", "DC_def", "disj_NTPPi", "PPi_eq_TPPi_or_NTPPi", "cmps_TPPiNTPPi", "cmps_NTPPNTPP", "cmps_ECNTPPi", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_NTPPiTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiTPP", "?_RCC5", "EQ_def", "PPi_def", "sym_PO", "sym_DR", "NTPPi_def", "TPPi_def", "PPi_eq_TPPi_or_NTPPi", "disj_NTPP", "disj_NTPPi", "DR_eq_DC_or_EC", "cmps_TPPiNTPPi", "cmps_NTPPNTPP", "cmps_DRPPi", "?_RCC5_def" Prover: SPASS cmps_NTPPiNTPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiNTPP", "?_RCC5", "P_impl_O", "O_sym", "PP_def", "sym_DR", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "DR_def", "PPi_eq_TPPi_or_NTPPi", "cmps_ECNTPPi", "cmps_DCNTPPi", "?_RCC5_def" Prover: SPASS cmps_NTPPiTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiTPPi", "TPP_def", "ga_non_empty_sort_Reg", "?_RCC5", "O_impl_C", "P_impl_O", "EQ_def", "PO_def", "PP_def", "NTPPi_def", "TPPi_def", "DR_eq_DC_or_EC", "PP_eq_TPP_or_NTPP", "PPi_eq_TPPi_or_NTPPi", "DR_def", "disj_PP", "DC_def", "disj_EC", "disj_TPP", "disj_NTPP", "disj_NTPPi", "cmps_TPPiNTPPi", "cmps_ECNTPPi", "cmps_DCTPPi", "cmps_PP", "P_inh_O", "P_def", "ga_non_empty_sort_QReg", "?_RCC5_def" Prover: SPASS cmps_NTPPiNTPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_NTPPiNTPPi", "NTPPi_def", "cmps_NTPPNTPP" Prover: SPASS