?_RCC5 Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "?_RCC5", "C_id", "ga_non_empty_sort_QReg", "DR_def", "O_impl_C", "O_sym", "?_RCC5_def", "EQ_def", "PPi_def", "PP_def", "PO_def", "P_def", "NTP_def" Prover: SPASS sym_DR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "sym_DR", "DR_def", "O_sym" Prover: SPASS sym_PO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "sym_PO", "O_sym", "PO_def" Prover: SPASS sym_EQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "sym_EQ", "EQ_def" Prover: SPASS disj_DR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_DR", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_DR", "sym_PO", "P_def", "ga_non_empty_sort_QReg", "DR_def" Prover: SPASS disj_PO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_PO", "EQ_def", "PPi_def", "PP_def", "sym_DR", "sym_PO", "P_def", "ga_non_empty_sort_QReg", "PO_def", "disj_DR" Prover: SPASS disj_PP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_PP", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PP_def", "sym_DR", "DR_def", "disj_PO" Prover: SPASS disj_PPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_PPi", "P_impl_O", "EQ_def", "PPi_def", "PP_def", "sym_DR", "sym_PO", "DR_def", "disj_PP" Prover: SPASS disj_EQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "disj_EQ", "EQ_def", "PPi_def", "sym_EQ", "disj_DR", "disj_PO", "disj_PPi" Prover: SPASS cmps_PPPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPPP", "P_impl_O", "O_sym", "PPi_def", "PP_def", "disj_PPi", "PO_def", "cmps_PP", "P_inh_O" Prover: SPASS cmps_PPPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPPPi", "?_RCC5" Prover: SPASS cmps_PPPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPPO", "DR_def", "C_non_null", "O_impl_C", "P_impl_O", "O_sym", "PPi_def", "PP_def", "sym_PO", "PO_def", "disj_PPi", "cmps_PP", "NTP_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_PPDR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPDR", "DR_def", "P_impl_O", "O_sym", "PPi_def", "PO_def", "PP_def", "sym_DR", "sym_PO", "disj_PP", "disj_PPi", "cmps_PPPP", "P_inh_O" Prover: SPASS cmps_PPEQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPEQ", "EQ_def", "sym_EQ" Prover: SPASS cmps_PPiPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPiPP", "P_impl_O", "PPi_def", "PP_def", "DR_def", "disj_PP", "PO_def", "P_inh_O" Prover: SPASS cmps_PPiPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPiPPi", "?_RCC5" Prover: SPASS cmps_PPiPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPiPO", "?_RCC5", "P_impl_O", "O_sym", "EQ_def", "PPi_def", "PO_def", "PP_def", "sym_PO", "DR_def", "disj_PP", "cmps_PPPP", "P_inh_O", "?_RCC5_def" Prover: SPASS cmps_PPiDR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPiDR", "DR_def", "C_sym", "O_impl_C", "P_impl_O", "O_sym", "PPi_def", "PP_def", "sym_DR", "sym_PO", "disj_PPi", "PO_def", "P_inh_O", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_PPiEQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PPiEQ", "EQ_def", "sym_EQ" Prover: SPASS cmps_POPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POPP", "P_impl_O", "O_sym", "PPi_def", "PO_def", "PP_def", "P_def", "ga_non_empty_sort_QReg", "DR_def", "disj_PPi", "cmps_PP", "P_inh_O", "cmps_PPPO" Prover: SPASS cmps_POPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POPPi", "?_RCC5", "P_impl_O", "EQ_def", "PPi_def", "PP_def", "disj_PP", "disj_PPi", "PO_def", "cmps_PPiPO", "?_RCC5_def" Prover: SPASS cmps_POPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POPO", "?_RCC5" Prover: SPASS cmps_PODR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_PODR", "DR_def", "O_impl_C", "O_sym", "PPi_def", "PO_def", "sym_DR", "sym_PO", "PP_def", "P_inh_O", "P_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_POEQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_POEQ", "EQ_def", "sym_EQ" Prover: SPASS cmps_DRPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DRPP", "DR_def", "O_impl_C", "P_impl_O", "O_sym", "PP_def", "sym_PO", "PO_def", "P_inh_O", "NTP_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_DRPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DRPPi", "PPi_def", "sym_DR", "cmps_PPDR" Prover: SPASS cmps_DRPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DRPO", "DR_def", "C_non_null", "O_impl_C", "O_sym", "PO_def", "sym_PO", "PP_def", "P_inh_O", "NTP_def", "ga_non_empty_sort_QReg" Prover: SPASS cmps_DRDR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DRDR", "?_RCC5" Prover: SPASS cmps_DREQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_DREQ", "EQ_def", "sym_EQ" Prover: SPASS cmps_EQPP Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_EQPP", "EQ_def" Prover: SPASS cmps_EQPPi Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_EQPPi", "EQ_def" Prover: SPASS cmps_EQPO Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_EQPO", "EQ_def" Prover: SPASS cmps_EQDR Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_EQDR", "EQ_def" Prover: SPASS cmps_EQEQ Com: CASL2SPASS : CASL -> SPASS Status: Proved Used axioms: "cmps_EQEQ", "EQ_def", "sym_EQ" Prover: SPASS