theory AllenHayesLadkin = BaseAllenHayes: axioms M5exist: "!! x :: Interval . !! y :: Interval . M x y ==> ? z :: Interval . ? u :: Interval . ? v :: Interval . M z x & M x y & M y u & M z v & M v u" (* author: Stefan Woelfl date: 05-11-2004 Summary: We show that, given the other axioms of BaseAllenLadkin, the following axiom M5var is equivalent to M5exist. M5var: "!! x :: Interval . !! y :: Interval . M x y ==> ? z :: Interval . ! u :: Interval . (M u x = M u z) & (M y u = M z u)" *) theorem M5var: "!! x :: Interval . !! y :: Interval . M x y ==> ? z :: Interval . ! u :: Interval . (M u x = M u z) & (M y u = M z u)" proof - fix x y :: Interval assume "M x y" from this M5exist obtain z u v where A: "M z x & M x y & M y u & M z v & M v u" by fast moreover { fix u0 :: Interval from M1 M3 M4 A have "(M u0 x = M u0 v) & (M y u0 = M v u0)" by blast } from this have "! u . (M u x = M u v) & (M y u = M v u)" by blast from this show "? z :: Interval . ! u :: Interval . (M u x = M u z) & (M y u = M z u)" by blast qed theorem M5exist_proved: "!! x :: Interval . !! y :: Interval . M x y ==> ? z :: Interval . ? u :: Interval . ? v :: Interval . M z x & M x y & M y u & M z v & M v u" proof - fix x y :: Interval assume "M x y" from this M3 M4 obtain z u where A: "M z x & M x y & M y u" by blast from this M5var obtain v where B: "! u . (M u x = M u v) & (M y u = M v u)" by blast from this A B have "M z x & M x y & M y u & M z v & M v u" by blast from this show "? z u v :: Interval . M z x & M x y & M y u & M z v & M v u" by blast qed end