# Natural Language Toolkit: Combinatory Categorial Grammar # # Copyright (C) 2001-2010 NLTK Project # Author: Graeme Gange # URL: # For license information, see LICENSE.TXT """ The lexicon is constructed by calling lexicon.parseLexicon(). In order to construct a parser, you also need a rule set. The standard English rules are provided in chart as chart.DefaultRuleSet The parser can then be constructed by calling, for example: parser = chart.CCGChartParser(, ) Parsing is then performed by running parser.nbest_parse(.split()) While this returns a list of trees, the default representation of the produced trees is not very enlightening, particularly given that it uses the same tree class as the CFG parsers. It is probably better to call: chart.printCCGDerivation() which should print a nice representation of the derivation. This entire process is shown far more clearly in the demonstration: python chart.py """ from nltk.parse.api import * from nltk.parse.chart import AbstractChartRule, EdgeI, Chart from nltk import Tree, defaultdict import lexicon from combinator import * # Based on the EdgeI class from NLTK. # A number of the properties of the EdgeI interface don't # transfer well to CCGs, however. class CCGEdge(EdgeI): def __init__(self,span,categ,rule): self._span = span self._categ = categ self._rule = rule # Accessors def lhs(self): return self._categ def span(self): return self._span def start(self): return self._span[0] def end(self): return self._span[1] def length(self): return self._span[1] - self.span[0] def rhs(self): return () def dot(self): return 0 def is_complete(self): return True def is_incomplete(self): return False def next(self): return None def categ(self): return self._categ def rule(self): return self._rule def __cmp__(self, other): if not isinstance(other, CCGEdge): return -1 return cmp((self._span,self._categ,self._rule), (other.span(),other.categ(),other.rule())) def __hash__(self): return hash((self._span,self._categ,self._rule)) class CCGLeafEdge(EdgeI): ''' Class representing leaf edges in a CCG derivation. ''' def __init__(self,pos,categ,leaf): self._pos = pos self._categ = categ self._leaf = leaf # Accessors def lhs(self): return self._categ def span(self): return (self._pos,self._pos+1) def start(self): return self._pos def end(self): return self._pos + 1 def length(self): return 1 def rhs(self): return self._leaf def dot(self): return 0 def is_complete(self): return True def is_incomplete(self): return False def next(self): return None def categ(self): return self._categ def leaf(self): return self._leaf def __cmp__(self, other): if not isinstance(other, CCGLeafEdge): return -1 return cmp((self._span,self._categ,self._rule), other.span(),other.categ(),other.rule()) def __hash__(self): return hash((self._pos,self._categ,self._leaf)) class BinaryCombinatorRule(AbstractChartRule): ''' Class implementing application of a binary combinator to a chart. Takes the directed combinator to apply. ''' NUMEDGES = 2 def __init__(self,combinator): self._combinator = combinator # Apply a combinator def apply_iter(self, chart, grammar, left_edge, right_edge): # The left & right edges must be touching. if not (left_edge.end() == right_edge.start()): return # Check if the two edges are permitted to combine. # If so, generate the corresponding edge. if self._combinator.can_combine(left_edge.categ(),right_edge.categ()): for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): new_edge = CCGEdge(span=(left_edge.start(), right_edge.end()),categ=res,rule=self._combinator) if chart.insert(new_edge,(left_edge,right_edge)): yield new_edge # The representation of the combinator (for printing derivations) def __str__(self): return str(self._combinator) # Type-raising must be handled slightly differently to the other rules, as the # resulting rules only span a single edge, rather than both edges. class ForwardTypeRaiseRule(AbstractChartRule): ''' Class for applying forward type raising ''' NUMEDGES = 2 def __init__(self): self._combinator = ForwardT def apply_iter(self, chart, grammar, left_edge, right_edge): if not (left_edge.end() == right_edge.start()): return for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): new_edge = CCGEdge(span=left_edge.span(),categ=res,rule=self._combinator) if chart.insert(new_edge,(left_edge,)): yield new_edge def __str__(self): return str(self._combinator) class BackwardTypeRaiseRule(AbstractChartRule): ''' Class for applying backward type raising. ''' NUMEDGES = 2 def __init__(self): self._combinator = BackwardT def apply_iter(self, chart, grammar, left_edge, right_edge): if not (left_edge.end() == right_edge.start()): return for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): new_edge = CCGEdge(span=right_edge.span(),categ=res,rule=self._combinator) if chart.insert(new_edge,(right_edge,)): yield new_edge def __str__(self): return str(self._combinator) # Common sets of combinators used for English derivations. ApplicationRuleSet = [BinaryCombinatorRule(ForwardApplication), \ BinaryCombinatorRule(BackwardApplication)] CompositionRuleSet = [BinaryCombinatorRule(ForwardComposition), \ BinaryCombinatorRule(BackwardComposition), \ BinaryCombinatorRule(BackwardBx)] SubstitutionRuleSet = [BinaryCombinatorRule(ForwardSubstitution), \ BinaryCombinatorRule(BackwardSx)] TypeRaiseRuleSet = [ForwardTypeRaiseRule(), BackwardTypeRaiseRule()] # The standard English rule set. DefaultRuleSet = ApplicationRuleSet + CompositionRuleSet + \ SubstitutionRuleSet + TypeRaiseRuleSet class CCGChartParser(ParserI): ''' Chart parser for CCGs. Based largely on the ChartParser class from NLTK. ''' def __init__(self, lexicon, rules, trace=0): self._lexicon = lexicon self._rules = rules self._trace = trace def lexicon(self): return self._lexicon # Implements the CYK algorithm def nbest_parse(self, tokens, n=None): tokens = list(tokens) chart = CCGChart(list(tokens)) lex = self._lexicon # Initialize leaf edges. for index in range(chart.num_leaves()): for cat in lex.categories(chart.leaf(index)): new_edge = CCGLeafEdge(index, cat, chart.leaf(index)) chart.insert(new_edge, ()) # Select a span for the new edges for span in range(2,chart.num_leaves()+1): for start in range(0,chart.num_leaves()-span+1): # Try all possible pairs of edges that could generate # an edge for that span for part in range(1,span): lstart = start mid = start + part rend = start + span for left in chart.select(span=(lstart,mid)): for right in chart.select(span=(mid,rend)): # Generate all possible combinations of the two edges for rule in self._rules: edges_added_by_rule = 0 for newedge in rule.apply_iter(chart,lex,left,right): edges_added_by_rule += 1 # Output the resulting parses return chart.parses(lex.start())[:n] class CCGChart(Chart): def __init__(self, tokens): Chart.__init__(self, tokens) # Constructs the trees for a given parse. Unfortnunately, the parse trees need to be # constructed slightly differently to those in the default Chart class, so it has to # be reimplemented def _trees(self, edge, complete, memo, tree_class): if edge in memo: return memo[edge] trees = [] memo[edge] = [] if isinstance(edge,CCGLeafEdge): word = tree_class(edge.lhs(),[self._tokens[edge.start()]]) leaf = tree_class((edge.lhs(),"Leaf"),[word]) memo[edge] = leaf return leaf for cpl in self.child_pointer_lists(edge): child_choices = [self._trees(cp, complete, memo, tree_class) for cp in cpl] if len(child_choices) > 0 and type(child_choices[0]) == type(""): child_choices = [child_choices] for children in self._choose_children(child_choices): lhs = (edge.lhs(),str(edge.rule())) trees.append(tree_class(lhs, children)) memo[edge] = trees return trees #-------- # Displaying derivations #-------- def printCCGDerivation(tree): # Get the leaves and initial categories leafcats = tree.pos() leafstr = '' catstr = '' # Construct a string with both the leaf word and corresponding # category aligned. for (leaf, cat) in leafcats: nextlen = 2 + max(len(leaf),len(str(cat))) lcatlen = (nextlen - len(str(cat)))/2 rcatlen = lcatlen + (nextlen - len(str(cat)))%2 catstr += ' '*lcatlen + str(cat) + ' '*rcatlen lleaflen = (nextlen - len(leaf))/2 rleaflen = lleaflen + (nextlen - len(leaf))%2 leafstr += ' '*lleaflen + leaf + ' '*rleaflen print leafstr print catstr # Display the derivation steps printCCGTree(0,tree) # Prints the sequence of derivation steps. def printCCGTree(lwidth,tree): rwidth = lwidth # Is a leaf (word). # Increment the span by the space occupied by the leaf. if not isinstance(tree,Tree): return 2 + lwidth + len(tree) # Find the width of the current derivation step for child in tree: rwidth = max(rwidth,printCCGTree(rwidth,child)) # Is a leaf node. # Don't print anything, but account for the space occupied. if not isinstance(tree.node,tuple): return max(rwidth,2 + lwidth + len(str(tree.node)), 2 + lwidth + len(tree[0])) (res,op) = tree.node # Pad to the left with spaces, followed by a sequence of '-' # and the derivation rule. print lwidth*' ' + (rwidth-lwidth)*'-' + str(op) # Print the resulting category on a new line. respadlen = (rwidth - lwidth - len(str(res)))/2 + lwidth print respadlen*' ' + str(res) return rwidth ### Demonstration code # Construct the lexicon lex = lexicon.parseLexicon(''' :- S, NP, N, VP # Primitive categories, S is the target primitive Det :: NP/N # Family of words Pro :: NP TV :: VP/NP Modal :: (S\\NP)/VP # Backslashes need to be escaped I => Pro # Word -> Category mapping you => Pro the => Det # Variables have the special keyword 'var' # '.' prevents permutation # ',' prevents composition and => var\\.,var/.,var which => (N\\N)/(S/NP) will => Modal # Categories can be either explicit, or families. might => Modal cook => TV eat => TV mushrooms => N parsnips => N bacon => N ''') def demo(): parser = CCGChartParser(lex, DefaultRuleSet) for parse in parser.nbest_parse("I might cook and eat the bacon".split(), 3): printCCGDerivation(parse) if __name__ == '__main__': demo()