# Natural Language Toolkit: Nonmonotonic Reasoning # # Author: Daniel H. Garrette # # Copyright (C) 2001-2010 NLTK Project # URL: # For license information, see LICENSE.TXT """ A module to perform nonmonotonic reasoning. The ideas and demonstrations in this module are based on "Logical Foundations of Artificial Intelligence" by Michael R. Genesereth and Nils J. Nilsson. """ from nltk.sem.logic import * from api import Prover, ProverCommandDecorator from prover9 import Prover9, Prover9Command from nltk.compat import defaultdict class ProverParseError(Exception): pass def get_domain(goal, assumptions): if goal is None: all_expressions = assumptions else: all_expressions = assumptions + [-goal] domain = set() for a in all_expressions: domain |= (a.free(False) - a.free(True)) return domain class ClosedDomainProver(ProverCommandDecorator): """ This is a prover decorator that adds domain closure assumptions before proving. """ def assumptions(self): assumptions = [a for a in self._command.assumptions()] goal = self._command.goal() domain = get_domain(goal, assumptions) return list([self.replace_quants(ex, domain) for ex in assumptions]) def goal(self): goal = self._command.goal() domain = get_domain(goal, self._command.assumptions()) return self.replace_quants(goal, domain) def replace_quants(self, ex, domain): """ Apply the closed domain assumption to the expression - Domain = union([e.free(False) for e in all_expressions]) - translate "exists x.P" to "(z=d1 | z=d2 | ... ) & P.replace(x,z)" OR "P.replace(x, d1) | P.replace(x, d2) | ..." - translate "all x.P" to "P.replace(x, d1) & P.replace(x, d2) & ..." @param ex: C{Expression} @param domain: C{set} of {Variable}s @return: C{Expression} """ if isinstance(ex, AllExpression): conjuncts = [ex.term.replace(ex.variable, VariableExpression(d)) for d in domain] conjuncts = [self.replace_quants(c, domain) for c in conjuncts] return reduce(lambda x,y: x&y, conjuncts) elif isinstance(ex, BooleanExpression): return ex.__class__(self.replace_quants(ex.first, domain), self.replace_quants(ex.second, domain) ) elif isinstance(ex, NegatedExpression): return -self.replace_quants(ex.term, domain) elif isinstance(ex, ExistsExpression): disjuncts = [ex.term.replace(ex.variable, VariableExpression(d)) for d in domain] disjuncts = [self.replace_quants(d, domain) for d in disjuncts] return reduce(lambda x,y: x|y, disjuncts) else: return ex class UniqueNamesProver(ProverCommandDecorator): """ This is a prover decorator that adds unique names assumptions before proving. """ def assumptions(self): """ - Domain = union([e.free(False) for e in all_expressions]) - if "d1 = d2" cannot be proven from the premises, then add "d1 != d2" """ assumptions = self._command.assumptions() domain = list(get_domain(self._command.goal(), assumptions)) #build a dictionary of obvious equalities eq_sets = SetHolder() for a in assumptions: if isinstance(a, EqualityExpression): av = a.first.variable bv = a.second.variable #put 'a' and 'b' in the same set eq_sets[av].add(bv) new_assumptions = [] for i,a in enumerate(domain): for b in domain[i+1:]: #if a and b are not already in the same equality set if b not in eq_sets[a]: newEqEx = EqualityExpression(VariableExpression(a), VariableExpression(b)) if Prover9().prove(newEqEx, assumptions): #we can prove that the names are the same entity. #remember that they are equal so we don't re-check. eq_sets[a].add(b) else: #we can't prove it, so assume unique names new_assumptions.append(-newEqEx) return assumptions + new_assumptions class SetHolder(list): """ A list of sets of Variables. """ def __getitem__(self, item): """ @param item: C{Variable} @return: the C{set} containing 'item' """ assert isinstance(item, Variable) for s in self: if item in s: return s #item is not found in any existing set. so create a new set new = set([item]) self.append(new) return new class ClosedWorldProver(ProverCommandDecorator): """ This is a prover decorator that completes predicates before proving. If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion of "P". If the assumptions contain "all x.(ostrich(x) -> bird(x))", then "all x.(bird(x) -> ostrich(x))" is the completion of "bird". If the assumptions don't contain anything that are "P", then "all x.-P(x)" is the completion of "P". walk(Socrates) Socrates != Bill + all x.(walk(x) -> (x=Socrates)) ---------------- -walk(Bill) see(Socrates, John) see(John, Mary) Socrates != John John != Mary + all x.all y.(see(x,y) -> ((x=Socrates & y=John) | (x=John & y=Mary))) ---------------- -see(Socrates, Mary) all x.(ostrich(x) -> bird(x)) bird(Tweety) -ostrich(Sam) Sam != Tweety + all x.(bird(x) -> (ostrich(x) | x=Tweety)) + all x.-ostrich(x) ------------------- -bird(Sam) """ def assumptions(self): assumptions = self._command.assumptions() predicates = self._make_predicate_dict(assumptions) new_assumptions = [] for p, predHolder in predicates.iteritems(): new_sig = self._make_unique_signature(predHolder) new_sig_exs = [VariableExpression(v) for v in new_sig] disjuncts = [] #Turn the signatures into disjuncts for sig in predHolder.signatures: equality_exs = [] for v1,v2 in zip(new_sig_exs, sig): equality_exs.append(EqualityExpression(v1,v2)) disjuncts.append(reduce(lambda x,y: x&y, equality_exs)) #Turn the properties into disjuncts for prop in predHolder.properties: #replace variables from the signature with new sig variables bindings = {} for v1,v2 in zip(new_sig_exs, prop[0]): bindings[v2] = v1 disjuncts.append(prop[1].substitute_bindings(bindings)) #make the assumption if disjuncts: #disjuncts exist, so make an implication antecedent = self._make_antecedent(p, new_sig) consequent = reduce(lambda x,y: x|y, disjuncts) accum = ImpExpression(antecedent, consequent) else: #nothing has property 'p' accum = NegatedExpression(self._make_antecedent(p, new_sig)) #quantify the implication for new_sig_var in new_sig[::-1]: accum = AllExpression(new_sig_var, accum) new_assumptions.append(accum) return assumptions + new_assumptions def _make_unique_signature(self, predHolder): """ This method figures out how many arguments the predicate takes and returns a tuple containing that number of unique variables. """ return tuple([unique_variable() for i in range(predHolder.signature_len)]) def _make_antecedent(self, predicate, signature): """ Return an application expression with 'predicate' as the predicate and 'signature' as the list of arguments. """ antecedent = predicate for v in signature: antecedent = antecedent(VariableExpression(v)) return antecedent def _make_predicate_dict(self, assumptions): """ Create a dictionary of predicates from the assumptions. @param assumptions: a C{list} of C{Expression}s @return: C{dict} mapping C{AbstractVariableExpression} to C{PredHolder} """ predicates = defaultdict(PredHolder) for a in assumptions: self._map_predicates(a, predicates) return predicates def _map_predicates(self, expression, predDict): if isinstance(expression, ApplicationExpression): (func, args) = expression.uncurry() if isinstance(func, AbstractVariableExpression): predDict[func].append_sig(tuple(args)) elif isinstance(expression, AndExpression): self._map_predicates(expression.first, predDict) self._map_predicates(expression.second, predDict) elif isinstance(expression, AllExpression): #collect all the universally quantified variables sig = [expression.variable] term = expression.term while isinstance(term, AllExpression): sig.append(term.variable) term = term.term if isinstance(term, ImpExpression): if isinstance(term.first, ApplicationExpression) and \ isinstance(term.second, ApplicationExpression): func1, args1 = term.first.uncurry() func2, args2 = term.second.uncurry() if isinstance(func1, AbstractVariableExpression) and \ isinstance(func2, AbstractVariableExpression) and \ sig == [v.variable for v in args1] and \ sig == [v.variable for v in args2]: predDict[func2].append_prop((tuple(sig), term.first)) predDict[func1].validate_sig_len(sig) class PredHolder(object): """ This class will be used by a dictionary that will store information about predicates to be used by the C{ClosedWorldProver}. The 'signatures' property is a list of tuples defining signatures for which the predicate is true. For instance, 'see(john, mary)' would be result in the signature '(john,mary)' for 'see'. The second element of the pair is a list of pairs such that the first element of the pair is a tuple of variables and the second element is an expression of those variables that makes the predicate true. For instance, 'all x.all y.(see(x,y) -> know(x,y))' would result in "((x,y),('see(x,y)'))" for 'know'. """ def __init__(self): self.signatures = [] self.properties = [] self.signature_len = None def append_sig(self, new_sig): self.validate_sig_len(new_sig) self.signatures.append(new_sig) def append_prop(self, new_prop): self.validate_sig_len(new_prop[0]) self.properties.append(new_prop) def validate_sig_len(self, new_sig): if self.signature_len is None: self.signature_len = len(new_sig) elif self.signature_len != len(new_sig): raise Exception("Signature lengths do not match") def __str__(self): return '(%s,%s,%s)' % (self.signatures, self.properties, self.signature_len) def __repr__(self): return str(self) def closed_domain_demo(): lp = LogicParser() p1 = lp.parse(r'exists x.walk(x)') p2 = lp.parse(r'man(Socrates)') c = lp.parse(r'walk(Socrates)') prover = Prover9Command(c, [p1,p2]) print prover.prove() cdp = ClosedDomainProver(prover) print 'assumptions:' for a in cdp.assumptions(): print ' ', a print 'goal:', cdp.goal() print cdp.prove() p1 = lp.parse(r'exists x.walk(x)') p2 = lp.parse(r'man(Socrates)') p3 = lp.parse(r'-walk(Bill)') c = lp.parse(r'walk(Socrates)') prover = Prover9Command(c, [p1,p2,p3]) print prover.prove() cdp = ClosedDomainProver(prover) print 'assumptions:' for a in cdp.assumptions(): print ' ', a print 'goal:', cdp.goal() print cdp.prove() p1 = lp.parse(r'exists x.walk(x)') p2 = lp.parse(r'man(Socrates)') p3 = lp.parse(r'-walk(Bill)') c = lp.parse(r'walk(Socrates)') prover = Prover9Command(c, [p1,p2,p3]) print prover.prove() cdp = ClosedDomainProver(prover) print 'assumptions:' for a in cdp.assumptions(): print ' ', a print 'goal:', cdp.goal() print cdp.prove() p1 = lp.parse(r'walk(Socrates)') p2 = lp.parse(r'walk(Bill)') c = lp.parse(r'all x.walk(x)') prover = Prover9Command(c, [p1,p2]) print prover.prove() cdp = ClosedDomainProver(prover) print 'assumptions:' for a in cdp.assumptions(): print ' ', a print 'goal:', cdp.goal() print cdp.prove() p1 = lp.parse(r'girl(mary)') p2 = lp.parse(r'dog(rover)') p3 = lp.parse(r'all x.(girl(x) -> -dog(x))') p4 = lp.parse(r'all x.(dog(x) -> -girl(x))') p5 = lp.parse(r'chase(mary, rover)') c = lp.parse(r'exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))') prover = Prover9Command(c, [p1,p2,p3,p4,p5]) print prover.prove() cdp = ClosedDomainProver(prover) print 'assumptions:' for a in cdp.assumptions(): print ' ', a print 'goal:', cdp.goal() print cdp.prove() def unique_names_demo(): lp = LogicParser() p1 = lp.parse(r'man(Socrates)') p2 = lp.parse(r'man(Bill)') c = lp.parse(r'exists x.exists y.(x != y)') prover = Prover9Command(c, [p1,p2]) print prover.prove() unp = UniqueNamesProver(prover) print 'assumptions:' for a in unp.assumptions(): print ' ', a print 'goal:', unp.goal() print unp.prove() p1 = lp.parse(r'all x.(walk(x) -> (x = Socrates))') p2 = lp.parse(r'Bill = William') p3 = lp.parse(r'Bill = Billy') c = lp.parse(r'-walk(William)') prover = Prover9Command(c, [p1,p2,p3]) print prover.prove() unp = UniqueNamesProver(prover) print 'assumptions:' for a in unp.assumptions(): print ' ', a print 'goal:', unp.goal() print unp.prove() def closed_world_demo(): lp = LogicParser() p1 = lp.parse(r'walk(Socrates)') p2 = lp.parse(r'(Socrates != Bill)') c = lp.parse(r'-walk(Bill)') prover = Prover9Command(c, [p1,p2]) print prover.prove() cwp = ClosedWorldProver(prover) print 'assumptions:' for a in cwp.assumptions(): print ' ', a print 'goal:', cwp.goal() print cwp.prove() p1 = lp.parse(r'see(Socrates, John)') p2 = lp.parse(r'see(John, Mary)') p3 = lp.parse(r'(Socrates != John)') p4 = lp.parse(r'(John != Mary)') c = lp.parse(r'-see(Socrates, Mary)') prover = Prover9Command(c, [p1,p2,p3,p4]) print prover.prove() cwp = ClosedWorldProver(prover) print 'assumptions:' for a in cwp.assumptions(): print ' ', a print 'goal:', cwp.goal() print cwp.prove() p1 = lp.parse(r'all x.(ostrich(x) -> bird(x))') p2 = lp.parse(r'bird(Tweety)') p3 = lp.parse(r'-ostrich(Sam)') p4 = lp.parse(r'Sam != Tweety') c = lp.parse(r'-bird(Sam)') prover = Prover9Command(c, [p1,p2,p3,p4]) print prover.prove() cwp = ClosedWorldProver(prover) print 'assumptions:' for a in cwp.assumptions(): print ' ', a print 'goal:', cwp.goal() print cwp.prove() def combination_prover_demo(): lp = LogicParser() p1 = lp.parse(r'see(Socrates, John)') p2 = lp.parse(r'see(John, Mary)') c = lp.parse(r'-see(Socrates, Mary)') prover = Prover9Command(c, [p1,p2]) print prover.prove() command = ClosedDomainProver( UniqueNamesProver( ClosedWorldProver(prover))) for a in command.assumptions(): print a print command.prove() def default_reasoning_demo(): lp = LogicParser() premises = [] #define taxonomy premises.append(lp.parse(r'all x.(elephant(x) -> animal(x))')) premises.append(lp.parse(r'all x.(bird(x) -> animal(x))')) premises.append(lp.parse(r'all x.(dove(x) -> bird(x))')) premises.append(lp.parse(r'all x.(ostrich(x) -> bird(x))')) premises.append(lp.parse(r'all x.(flying_ostrich(x) -> ostrich(x))')) #default properties premises.append(lp.parse(r'all x.((animal(x) & -Ab1(x)) -> -fly(x))')) #normal animals don't fly premises.append(lp.parse(r'all x.((bird(x) & -Ab2(x)) -> fly(x))')) #normal birds fly premises.append(lp.parse(r'all x.((ostrich(x) & -Ab3(x)) -> -fly(x))')) #normal ostriches don't fly #specify abnormal entities premises.append(lp.parse(r'all x.(bird(x) -> Ab1(x))')) #flight premises.append(lp.parse(r'all x.(ostrich(x) -> Ab2(x))')) #non-flying bird premises.append(lp.parse(r'all x.(flying_ostrich(x) -> Ab3(x))')) #flying ostrich #define entities premises.append(lp.parse(r'elephant(E)')) premises.append(lp.parse(r'dove(D)')) premises.append(lp.parse(r'ostrich(O)')) #print the assumptions prover = Prover9Command(None, premises) command = UniqueNamesProver(ClosedWorldProver(prover)) for a in command.assumptions(): print a print_proof('-fly(E)', premises) print_proof('fly(D)', premises) print_proof('-fly(O)', premises) def print_proof(goal, premises): lp = LogicParser() prover = Prover9Command(lp.parse(goal), premises) command = UniqueNamesProver(ClosedWorldProver(prover)) print goal, prover.prove(), command.prove() def demo(): closed_domain_demo() unique_names_demo() closed_world_demo() combination_prover_demo() default_reasoning_demo() if __name__ == '__main__': demo()