# Natural Language Toolkit: Ngram Association Measures # # Copyright (C) 2001-2010 NLTK Project # Author: Joel Nothman # URL: # For license information, see LICENSE.TXT """ Provides scoring functions for a number of association measures through a generic, abstract implementation in L{NgramAssocMeasures}, and n-specific L{BigramAssocMeasures} and L{TrigramAssocMeasures}. """ import math as _math _log2 = lambda x: _math.log(x, 2.0) _ln = _math.log _product = lambda s: reduce(lambda x, y: x * y, s) _SMALL = 1e-20 ### Indices to marginals arguments: NGRAM = 0 """Marginals index for the ngram count""" UNIGRAMS = -2 """Marginals index for a tuple of each unigram count""" TOTAL = -1 """Marginals index for the number of words in the data""" class NgramAssocMeasures(object): """ An abstract class defining a collection of generic association measures. Each public method returns a score, taking the following arguments: score_fn(count_of_ngram, (count_of_n-1gram_1, ..., count_of_n-1gram_j), (count_of_n-2gram_1, ..., count_of_n-2gram_k), ..., (count_of_1gram_1, ..., count_of_1gram_n), count_of_total_words) See L{BigramAssocMeasures} and L{TrigramAssocMeasures} Inheriting classes should define a property _n, and a method _contingency which calculates contingency values from marginals in order for all association measures defined here to be usable. """ @staticmethod def _contingency(*marginals): """Calculates values of a contingency table from marginal values.""" raise NotImplementedError, ("The contingency table is not available" "in the general ngram case") @staticmethod def _marginals(*contingency): """Calculates values of contingency table marginals from its values.""" raise NotImplementedError, ("The contingency table is not available" "in the general ngram case") @classmethod def _expected_values(cls, cont): """Calculates expected values for a contingency table.""" n_all = sum(cont) bits = [1 << i for i in range(cls._n)] # For each contingency table cell for i in range(len(cont)): # Yield the expected value yield (_product(cont[i] + cont[i ^ j] for j in bits) / float(n_all ** 2)) @staticmethod def raw_freq(*marginals): """Scores ngrams by their frequency""" return float(marginals[NGRAM]) / marginals[TOTAL] @classmethod def student_t(cls, *marginals): """Scores ngrams using Student's t test with independence hypothesis for unigrams, as in Manning and Schutze 5.3.2. """ return ((marginals[NGRAM] * marginals[TOTAL] - _product(marginals[UNIGRAMS])) / (marginals[TOTAL] ** (cls._n - 1) * (marginals[NGRAM] + _SMALL) ** .5)) @classmethod def chi_sq(cls, *marginals): """Scores ngrams using Pearson's chi-square as in Manning and Schutze 5.3.3. """ cont = cls._contingency(*marginals) exps = cls._expected_values(cont) return sum((obs - exp) ** 2 / (exp + _SMALL) for obs, exp in zip(cont, exps)) @staticmethod def mi_like(*marginals, **kwargs): """Scores ngrams using a variant of mutual information. The keyword argument power sets an exponent (default 3) for the numerator. No logarithm of the result is calculated. """ return (marginals[NGRAM] ** kwargs.get('power', 3) / float(_product(marginals[UNIGRAMS]))) @classmethod def pmi(cls, *marginals): """Scores ngrams by pointwise mutual information, as in Manning and Schutze 5.4. """ return (_log2(marginals[NGRAM] * marginals[TOTAL] ** (cls._n - 1)) - _log2(_product(marginals[UNIGRAMS]))) @classmethod def likelihood_ratio(cls, *marginals): """Scores ngrams using likelihood ratios as in Manning and Schutze 5.3.4. """ cont = cls._contingency(*marginals) # I don't understand why this negation is needed return ((-1) ** cls._n * 2 * sum(obs * _ln(float(obs) / (exp + _SMALL) + _SMALL) for obs, exp in zip(cont, cls._expected_values(cont)))) @classmethod def poisson_stirling(cls, *marginals): """Scores ngrams using the Poisson-Stirling measure.""" exp = (_product(marginals[UNIGRAMS]) / float(marginals[TOTAL] ** (cls._n - 1))) return marginals[NGRAM] * (_log2(marginals[NGRAM] / exp) - 1) @classmethod def jaccard(cls, *marginals): """Scores ngrams using the Jaccard index.""" cont = cls._contingency(*marginals) return float(cont[0]) / sum(cont[:-1]) class BigramAssocMeasures(NgramAssocMeasures): """ A collection of trigram association measures. Each association measure is provided as a function with three arguments: bigram_score_fn(n_ii, (n_ix, n_xi), n_xx) The arguments constitute the marginals of a contingency table, counting the occurrences of particular events in a corpus. The letter i in the suffix refers to the appearance of the word in question, while x indicates the appearance of any word. Thus, for example: n_ii counts (w1, w2), i.e. the bigram being scored n_ix counts (w1, *) n_xi counts (*, w2) n_xx counts (*, *), i.e. any bigram This may be shown with respect to a contingency table: w1 ~w1 ------ ------ w2 | n_ii | n_oi | = n_xi ------ ------ ~w2 | n_io | n_oo | ------ ------ = n_ix TOTAL = n_xx """ _n = 2 @staticmethod def _contingency(n_ii, (n_ix, n_xi), n_xx): """Calculates values of a bigram contingency table from marginal values.""" n_oi = n_xi - n_ii n_io = n_ix - n_ii return (n_ii, n_oi, n_io, n_xx - n_ii - n_oi - n_io) @staticmethod def _marginals(n_ii, n_oi, n_io, n_oo): """Calculates values of contingency table marginals from its values.""" return (n_ii, (n_oi + n_ii, n_io + n_ii), n_oo + n_oi + n_io + n_ii) @staticmethod def _expected_values(cont): """Calculates expected values for a contingency table.""" n_xx = sum(cont) # For each contingency table cell for i in range(4): yield (cont[i] + cont[i ^ 1]) * (cont[i] + cont[i ^ 2]) / float(n_xx) @classmethod def phi_sq(cls, *marginals): """Scores bigrams using phi-square, the square of the Pearson correlation coefficient. """ n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals) return (float((n_ii*n_oo - n_io*n_oi)**2) / ((n_ii + n_io) * (n_ii + n_oi) * (n_io + n_oo) * (n_oi + n_oo))) @classmethod def chi_sq(cls, n_ii, (n_ix, n_xi), n_xx): """Scores bigrams using chi-square, i.e. phi-sq multiplied by the number of bigrams, as in Manning and Schutze 5.3.3. """ return n_xx * cls.phi_sq(n_ii, (n_ix, n_xi), n_xx) @staticmethod def dice(n_ii, (n_ix, n_xi), n_xx): """Scores bigrams using Dice's coefficient.""" return 2 * float(n_ii) / (n_ix + n_xi) class TrigramAssocMeasures(NgramAssocMeasures): """ A collection of trigram association measures. Each association measure is provided as a function with four arguments: trigram_score_fn(n_iii, (n_iix, n_ixi, n_xii), (n_ixx, n_xix, n_xxi), n_xxx) The arguments constitute the marginals of a contingency table, counting the occurrences of particular events in a corpus. The letter i in the suffix refers to the appearance of the word in question, while x indicates the appearance of any word. Thus, for example: n_iii counts (w1, w2, w3), i.e. the trigram being scored n_ixx counts (w1, *, *) n_xxx counts (*, *, *), i.e. any trigram """ _n = 3 @staticmethod def _contingency(n_iii, (n_iix, n_ixi, n_xii), (n_ixx, n_xix, n_xxi), n_xxx): """Calculates values of a trigram contingency table (or cube) from marginal values. """ n_oii = n_xii - n_iii n_ioi = n_ixi - n_iii n_iio = n_iix - n_iii n_ooi = n_xxi - n_iii - n_oii - n_ioi n_oio = n_xix - n_iii - n_oii - n_iio n_ioo = n_ixx - n_iii - n_ioi - n_iio n_ooo = n_xxx - n_iii - n_oii - n_ioi - n_iio - n_ooi - n_oio - n_ioo return (n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo) @staticmethod def _marginals(*contingency): """Calculates values of contingency table marginals from its values.""" n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo = contingency return (n_iii, (n_iii + n_iio, n_iii + n_ioi, n_iii + n_oii), (n_iii + n_ioi + n_iio + n_ioo, n_iii + n_oii + n_iio + n_oio, n_iii + n_oii + n_ioi + n_ooi), sum(contingency)) class ContingencyMeasures(object): """Wraps NgramAssocMeasures classes such that the arguments of association measures are contingency table values rather than marginals. """ def __init__(self, measures): """Constructs a ContingencyMeasures given a NgramAssocMeasures class""" self.__class__.__name__ = 'Contingency' + measures.__class__.__name__ for k in dir(measures): if k.startswith('__'): continue v = getattr(measures, k) if not k.startswith('_'): v = self._make_contingency_fn(measures, v) setattr(self, k, v) @staticmethod def _make_contingency_fn(measures, old_fn): """From an association measure function, produces a new function which accepts contingency table values as its arguments. """ def res(*contingency): return old_fn(*measures._marginals(*contingency)) res.__doc__ = old_fn.__doc__ res.__name__ = old_fn.__name__ return res