# Natural Language Toolkit: Confusion Matrices # # Copyright (C) 2001-2010 NLTK Project # Author: Edward Loper # Steven Bird # URL: # For license information, see LICENSE.TXT class ConfusionMatrix(object): """ The confusion matrix between a list of reference values and a corresponding list of test values. Entry [M{r},M{t}] of this matrix is a count of the number of times that the reference value M{r} corresponds to the test value M{t}. E.g.: >>> ref = 'DET NN VB DET JJ NN NN IN DET NN'.split() >>> test = 'DET VB VB DET NN NN NN IN DET NN'.split() >>> cm = ConfusionMatrix(ref, test) >>> print cm['NN', 'NN'] 3 Note that the diagonal entries (M{Ri}=M{Tj}) of this matrix corresponds to correct values; and the off-diagonal entries correspond to incorrect values. """ def __init__(self, reference, test, sort_by_count=False): """ Construct a new confusion matrix from a list of reference values and a corresponding list of test values. @type reference: C{list} @param reference: An ordered list of reference values. @type test: C{list} @param test: A list of values to compare against the corresponding reference values. @raise ValueError: If C{reference} and C{length} do not have the same length. """ if len(reference) != len(test): raise ValueError('Lists must have the same length.') # Get a list of all values. if sort_by_count: ref_fdist = FreqDist(reference) test_fdist = FreqDist(test) def key(v): return -(ref_fdist[v]+test_fdist[v]) values = sorted(set(reference+test), key=key) else: values = sorted(set(reference+test)) # Construct a value->index dictionary indices = dict((val,i) for (i,val) in enumerate(values)) # Make a confusion matrix table. confusion = [[0 for val in values] for val in values] max_conf = 0 # Maximum confusion for w,g in zip(reference, test): confusion[indices[w]][indices[g]] += 1 max_conf = max(max_conf, confusion[indices[w]][indices[g]]) #: A list of all values in C{reference} or C{test}. self._values = values #: A dictionary mapping values in L{self._values} to their indices. self._indices = indices #: The confusion matrix itself (as a list of lists of counts). self._confusion = confusion #: The greatest count in L{self._confusion} (used for printing). self._max_conf = max_conf #: The total number of values in the confusion matrix. self._total = len(reference) #: The number of correct (on-diagonal) values in the matrix. self._correct = sum(confusion[i][i] for i in range(len(values))) def __getitem__(self, (li,lj)): """ @return: The number of times that value C{li} was expected and value C{lj} was given. @rtype: C{int} """ i = self._indices[li] j = self._indices[lj] return self._confusion[i][j] def __repr__(self): return '' % (self._correct, self._total) def __str__(self): return self.pp() def pp(self, show_percents=False, values_in_chart=True, truncate=None, sort_by_count=False): """ @return: A multi-line string representation of this confusion matrix. @type truncate: int @param truncate: If specified, then only show the specified number of values. Any sorting (e.g., sort_by_count) will be performed before truncation. @param sort_by_count: If true, then sort by the count of each label in the reference data. I.e., labels that occur more frequently in the reference label will be towards the left edge of the matrix, and labels that occur less frequently will be towards the right edge. @todo: add marginals? """ confusion = self._confusion values = self._values if sort_by_count: values = sorted(values, key=lambda v: -sum(self._confusion[self._indices[v]])) if truncate: values = values[:truncate] if values_in_chart: value_strings = [str(val) for val in values] else: value_strings = [str(n+1) for n in range(len(values))] # Construct a format string for row values valuelen = max(len(val) for val in value_strings) value_format = '%' + `valuelen` + 's | ' # Construct a format string for matrix entries if show_percents: entrylen = 6 entry_format = '%5.1f%%' zerostr = ' .' else: entrylen = len(`self._max_conf`) entry_format = '%' + `entrylen` + 'd' zerostr = ' '*(entrylen-1) + '.' # Write the column values. s = '' for i in range(valuelen): s += (' '*valuelen)+' |' for val in value_strings: if i >= valuelen-len(val): s += val[i-valuelen+len(val)].rjust(entrylen+1) else: s += ' '*(entrylen+1) s += ' |\n' # Write a dividing line s += '%s-+-%s+\n' % ('-'*valuelen, '-'*((entrylen+1)*len(values))) # Write the entries. for val, li in zip(value_strings, values): i = self._indices[li] s += value_format % val for lj in values: j = self._indices[lj] if confusion[i][j] == 0: s += zerostr elif show_percents: s += entry_format % (100.0*confusion[i][j]/self._total) else: s += entry_format % confusion[i][j] if i == j: prevspace = s.rfind(' ') s = s[:prevspace] + '<' + s[prevspace+1:] + '>' else: s += ' ' s += '|\n' # Write a dividing line s += '%s-+-%s+\n' % ('-'*valuelen, '-'*((entrylen+1)*len(values))) # Write a key s += '(row = reference; col = test)\n' if not values_in_chart: s += 'Value key:\n' for i, value in enumerate(values): s += '%6d: %s\n' % (i+1, value) return s def key(self): values = self._values str = 'Value key:\n' indexlen = len(`len(values)-1`) key_format = ' %'+`indexlen`+'d: %s\n' for i in range(len(values)): str += key_format % (i, values[i]) return str def demo(): reference = 'DET NN VB DET JJ NN NN IN DET NN'.split() test = 'DET VB VB DET NN NN NN IN DET NN'.split() print 'Reference =', reference print 'Test =', test print 'Confusion matrix:' print ConfusionMatrix(reference, test) print ConfusionMatrix(reference, test).pp(sort_by_count=True) if __name__ == '__main__': demo()