# Natural Language Toolkit: Cooper storage for Quantifier Ambiguity # # Copyright (C) 2001-2010 NLTK Project # Author: Ewan Klein # URL: # For license information, see LICENSE.TXT from logic import LambdaExpression, ApplicationExpression, Variable, LogicParser from nltk.parse import load_parser from nltk.parse.featurechart import InstantiateVarsChart class CooperStore(object): """ A container for handling quantifier ambiguity via Cooper storage. """ def __init__(self, featstruct): """ @param featstruct: The value of the C{sem} node in a tree from L{parse_with_bindops()} @type featstruct: A L{FeatStruct} with features C{core} and C{store} """ self.featstruct = featstruct self.readings = [] try: self.core = featstruct['CORE'] self.store = featstruct['STORE'] except KeyError: print "%s is not a Cooper storage structure" % featstruct def _permute(self, lst): """ @return: An iterator over the permutations of the input list @type lst: C{list} @rtype: C{iterator} """ remove = lambda lst0, index: lst0[:index] + lst0[index+1:] if lst: for index, x in enumerate(lst): for y in self._permute(remove(lst, index)): yield (x,)+y else: yield () def s_retrieve(self, trace=False): """ Carry out S-Retrieval of binding operators in store. If hack=True, serialize the bindop and core as strings and reparse. Ugh. Each permutation of the store (i.e. list of binding operators) is taken to be a possible scoping of quantifiers. We iterate through the binding operators in each permutation, and successively apply them to the current term, starting with the core semantic representation, working from the inside out. Binding operators are of the form:: bo(\P.all x.(man(x) -> P(x)),z1) """ for perm, store_perm in enumerate(self._permute(self.store)): if trace: print "Permutation %s" % (perm+1) term = self.core for bindop in store_perm: # we just want the arguments that are wrapped by the 'bo' predicate quant, varex = tuple(bindop.args) # use var to make an abstraction over the current term and then # apply the quantifier to it term = ApplicationExpression(quant, LambdaExpression(varex.variable, term)) if trace: print " ", term term = term.simplify() self.readings.append(term) def parse_with_bindops(sentence, grammar=None, trace=0): """ Use a grammar with Binding Operators to parse a sentence. """ if not grammar: grammar = 'grammars/book_grammars/storage.fcfg' parser = load_parser(grammar, trace=trace, chart_class=InstantiateVarsChart) # Parse the sentence. tokens = sentence.split() return parser.nbest_parse(tokens) def demo(): from nltk.sem import cooper_storage as cs sentence = "every girl chases a dog" #sentence = "a man gives a bone to every dog" print print "Analyis of sentence '%s'" % sentence print "=" * 50 trees = cs.parse_with_bindops(sentence, trace=0) for tree in trees: semrep = cs.CooperStore(tree.node['SEM']) print print "Binding operators:" print "-" * 15 for s in semrep.store: print s print print "Core:" print "-" * 15 print semrep.core print print "S-Retrieval:" print "-" * 15 semrep.s_retrieve(trace=True) print "Readings:" print "-" * 15 for i, reading in enumerate(semrep.readings): print "%s: %s" % (i+1, reading) if __name__ == '__main__': demo()