.. Copyright (C) 2001-2010 NLTK Project .. For license information, see LICENSE.TXT ============= Classifiers ============= Classifiers label tokens with category labels (or *class labels*). Typically, labels are represented with strings (such as ``"health"`` or ``"sports"``. In NLTK, classifiers are defined using classes that implement the `ClassifyI` interface: >>> import nltk >>> nltk.usage(nltk.ClassifierI) ClassifierI supports the following operations: - self.batch_classify(featuresets) - self.batch_prob_classify(featuresets) - self.classify(featureset) - self.labels() - self.prob_classify(featureset) NLTK defines several classifier classes: - `ConditionalExponentialClassifier` - `DecisionTreeClassifier` - `MaxentClassifier` - `NaiveBayesClassifier` - `WekaClassifier` Classifiers are typically created by training them on a training corpus. Regression Tests ~~~~~~~~~~~~~~~~ We define a very simple training corpus with 3 binary features: ['a', 'b', 'c'], and are two labels: ['x', 'y']. We use a simple feature set so that the correct answers can be calculated analytically (although we haven't done this yet for all tests). >>> train = [ ... (dict(a=1,b=1,c=1), 'y'), ... (dict(a=1,b=1,c=1), 'x'), ... (dict(a=1,b=1,c=0), 'y'), ... (dict(a=0,b=1,c=1), 'x'), ... (dict(a=0,b=1,c=1), 'y'), ... (dict(a=0,b=0,c=1), 'y'), ... (dict(a=0,b=1,c=0), 'x'), ... (dict(a=0,b=0,c=0), 'x'), ... (dict(a=0,b=1,c=1), 'y'), ... ] >>> test = [ ... (dict(a=1,b=0,c=1)), # unseen ... (dict(a=1,b=0,c=0)), # unseen ... (dict(a=0,b=1,c=1)), # seen 3 times, labels=y,y,x ... (dict(a=0,b=1,c=0)), # seen 1 time, label=x ... ] Test the Naive Bayes classifier: >>> classifier = nltk.NaiveBayesClassifier.train(train) >>> sorted(classifier.labels()) ['x', 'y'] >>> classifier.batch_classify(test) ['y', 'x', 'y', 'x'] >>> for pdist in classifier.batch_prob_classify(test): ... print '%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')) 0.3104 0.6896 0.5746 0.4254 0.3685 0.6315 0.6365 0.3635 >>> classifier.show_most_informative_features() Most Informative Features c = 0 x : y = 2.0 : 1.0 c = 1 y : x = 1.5 : 1.0 a = 1 y : x = 1.4 : 1.0 a = 0 x : y = 1.2 : 1.0 b = 0 x : y = 1.2 : 1.0 b = 1 y : x = 1.1 : 1.0 Test the Decision Tree classifier: >>> classifier = nltk.DecisionTreeClassifier.train( ... train, entropy_cutoff=0, ... support_cutoff=0) >>> sorted(classifier.labels()) ['x', 'y'] >>> print classifier c=0? .................................................. x a=0? ................................................ x a=1? ................................................ y c=1? .................................................. y >>> classifier.batch_classify(test) ['y', 'y', 'y', 'x'] >>> for pdist in classifier.batch_prob_classify(test): ... print '%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')) Traceback (most recent call last): . . . NotImplementedError Test the Maximum Entropy classifier training algorithms; they should all generate the same results. >>> def test_maxent(algorithms): ... classifiers = {} ... for algorithm in nltk.classify.MaxentClassifier.ALGORITHMS: ... if algorithm.lower() == 'megam': ... try: nltk.classify.megam.config_megam() ... except: raise #continue ... try: ... classifiers[algorithm] = nltk.MaxentClassifier.train( ... train, algorithm, trace=0, max_iter=1000) ... except Exception, e: ... classifiers[algorithm] = e ... print ' '*11+''.join([' test[%s] ' % i ... for i in range(len(test))]) ... print ' '*11+' p(x) p(y)'*len(test) ... print '-'*(11+15*len(test)) ... for algorithm, classifier in classifiers.items(): ... print '%11s' % algorithm, ... if isinstance(classifier, Exception): ... print 'Error: %r' % classifier; continue ... for featureset in test: ... pdist = classifier.prob_classify(featureset) ... print '%8.2f%6.2f' % (pdist.prob('x'), pdist.prob('y')), ... print >>> test_maxent(nltk.classify.MaxentClassifier.ALGORITHMS) ... # doctest: +ELLIPSIS [Found megam: ...] test[0] test[1] test[2] test[3] p(x) p(y) p(x) p(y) p(x) p(y) p(x) p(y) ----------------------------------------------------------------------- LBFGSB 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 GIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 IIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 Nelder-Mead 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 CG 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 BFGS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 MEGAM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 Powell 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 Regression tests for TypedMaxentFeatureEncoding ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ >>> from nltk.classify import maxent >>> train = [ ... ({'a': 1, 'b': 1, 'c': 1}, 'y'), ... ({'a': 5, 'b': 5, 'c': 5}, 'x'), ... ({'a': 0.9, 'b': 0.9, 'c': 0.9}, 'y'), ... ({'a': 5.5, 'b': 5.4, 'c': 5.3}, 'x'), ... ({'a': 0.8, 'b': 1.2, 'c': 1}, 'y'), ... ({'a': 5.1, 'b': 4.9, 'c': 5.2}, 'x') ... ] >>> test = [ ... {'a': 1, 'b': 0.8, 'c': 1.2}, ... {'a': 5.2, 'b': 5.1, 'c': 5} ... ] >>> encoding = maxent.TypedMaxentFeatureEncoding.train( ... train, count_cutoff=3, alwayson_features=True) >>> classifier = maxent.MaxentClassifier.train( ... train, bernoulli=False, encoding=encoding, trace=0) >>> classifier.batch_classify(test) ['y', 'x']