(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../../LICENSE. *) (* *) (***********************************************************************) (* $Id: big_int.mli,v 1.10 2002/03/14 20:12:54 xleroy Exp $ *) (** Operations on arbitrary-precision integers. Big integers (type [big_int]) are signed integers of arbitrary size. *) open Nat type big_int (** The type of big integers. *) val zero_big_int : big_int (** The big integer [0]. *) val unit_big_int : big_int (** The big integer [1]. *) (** {6 Arithmetic operations} *) val minus_big_int : big_int -> big_int (** Unary negation. *) val abs_big_int : big_int -> big_int (** Absolute value. *) val add_big_int : big_int -> big_int -> big_int (** Addition. *) val succ_big_int : big_int -> big_int (** Successor (add 1). *) val add_int_big_int : int -> big_int -> big_int (** Addition of a small integer to a big integer. *) val sub_big_int : big_int -> big_int -> big_int (** Subtraction. *) val pred_big_int : big_int -> big_int (** Predecessor (subtract 1). *) val mult_big_int : big_int -> big_int -> big_int (** Multiplication of two big integers. *) val mult_int_big_int : int -> big_int -> big_int (** Multiplication of a big integer by a small integer *) val square_big_int: big_int -> big_int (** Return the square of the given big integer *) val sqrt_big_int: big_int -> big_int (** [sqrt_big_int a] returns the integer square root of [a], that is, the largest big integer [r] such that [r * r <= a]. Raise [Invalid_argument] if [a] is negative. *) val quomod_big_int : big_int -> big_int -> big_int * big_int (** Euclidean division of two big integers. The first part of the result is the quotient, the second part is the remainder. Writing [(q,r) = quomod_big_int a b], we have [a = q * b + r] and [0 <= r < |b|]. Raise [Division_by_zero] if the divisor is zero. *) val div_big_int : big_int -> big_int -> big_int (** Euclidean quotient of two big integers. This is the first result [q] of [quomod_big_int] (see above). *) val mod_big_int : big_int -> big_int -> big_int (** Euclidean modulus of two big integers. This is the second result [r] of [quomod_big_int] (see above). *) val gcd_big_int : big_int -> big_int -> big_int (** Greatest common divisor of two big integers. *) val power_int_positive_int: int -> int -> big_int val power_big_int_positive_int: big_int -> int -> big_int val power_int_positive_big_int: int -> big_int -> big_int val power_big_int_positive_big_int: big_int -> big_int -> big_int (** Exponentiation functions. Return the big integer representing the first argument [a] raised to the power [b] (the second argument). Depending on the function, [a] and [b] can be either small integers or big integers. Raise [Invalid_argument] if [b] is negative. *) (** {6 Comparisons and tests} *) val sign_big_int : big_int -> int (** Return [0] if the given big integer is zero, [1] if it is positive, and [-1] if it is negative. *) val compare_big_int : big_int -> big_int -> int (** [compare_big_int a b] returns [0] if [a] and [b] are equal, [1] if [a] is greater than [b], and [-1] if [a] is smaller than [b]. *) val eq_big_int : big_int -> big_int -> bool val le_big_int : big_int -> big_int -> bool val ge_big_int : big_int -> big_int -> bool val lt_big_int : big_int -> big_int -> bool val gt_big_int : big_int -> big_int -> bool (** Usual boolean comparisons between two big integers. *) val max_big_int : big_int -> big_int -> big_int (** Return the greater of its two arguments. *) val min_big_int : big_int -> big_int -> big_int (** Return the smaller of its two arguments. *) val num_digits_big_int : big_int -> int (** Return the number of machine words used to store the given big integer. *) (** {6 Conversions to and from strings} *) val string_of_big_int : big_int -> string (** Return the string representation of the given big integer, in decimal (base 10). *) val big_int_of_string : string -> big_int (** Convert a string to a big integer, in decimal. The string consists of an optional [-] or [+] sign, followed by one or several decimal digits. *) (** {6 Conversions to and from other numerical types} *) val big_int_of_int : int -> big_int (** Convert a small integer to a big integer. *) val is_int_big_int : big_int -> bool (** Test whether the given big integer is small enough to be representable as a small integer (type [int]) without loss of precision. On a 32-bit platform, [is_int_big_int a] returns [true] if and only if [a] is between 2{^30} and 2{^30}-1. On a 64-bit platform, [is_int_big_int a] returns [true] if and only if [a] is between -2{^62} and 2{^62}-1. *) val int_of_big_int : big_int -> int (** Convert a big integer to a small integer (type [int]). Raises [Failure "int_of_big_int"] if the big integer is not representable as a small integer. *) val float_of_big_int : big_int -> float (** Returns a floating-point number approximating the given big integer. *) (**/**) (** {6 For internal use} *) val nat_of_big_int : big_int -> nat val big_int_of_nat : nat -> big_int val base_power_big_int: int -> int -> big_int -> big_int val sys_big_int_of_string: string -> int -> int -> big_int val round_futur_last_digit : string -> int -> int -> bool val approx_big_int: int -> big_int -> string