Portability | non-portable (GHC extensions) |
---|---|
Stability | internal |
Maintainer | cvs-ghc@haskell.org |
Safe Haskell | None |
- The word size story.
- Char#
- Int#
- Word#
- Narrowings
- Int64#
- Word64#
- Double#
- Float#
- Arrays
- Byte Arrays
- Arrays of arrays
- Addr#
- Mutable variables
- Exceptions
- STM-accessible Mutable Variables
- Synchronized Mutable Variables
- Delay/wait operations
- Concurrency primitives
- Weak pointers
- Stable pointers and names
- Unsafe pointer equality
- Parallelism
- Tag to enum stuff
- Bytecode operations
- Misc
- Etc
GHC's primitive types and operations. Use GHC.Exts from the base package instead of importing this module directly.
- data Char#
- gtChar# :: Char# -> Char# -> Bool
- geChar# :: Char# -> Char# -> Bool
- eqChar# :: Char# -> Char# -> Bool
- neChar# :: Char# -> Char# -> Bool
- ltChar# :: Char# -> Char# -> Bool
- leChar# :: Char# -> Char# -> Bool
- ord# :: Char# -> Int#
- data Int#
- (+#) :: Int# -> Int# -> Int#
- (-#) :: Int# -> Int# -> Int#
- (*#) :: Int# -> Int# -> Int#
- mulIntMayOflo# :: Int# -> Int# -> Int#
- quotInt# :: Int# -> Int# -> Int#
- remInt# :: Int# -> Int# -> Int#
- quotRemInt# :: Int# -> Int# -> (#Int#, Int##)
- negateInt# :: Int# -> Int#
- addIntC# :: Int# -> Int# -> (#Int#, Int##)
- subIntC# :: Int# -> Int# -> (#Int#, Int##)
- (>#) :: Int# -> Int# -> Bool
- (>=#) :: Int# -> Int# -> Bool
- (==#) :: Int# -> Int# -> Bool
- (/=#) :: Int# -> Int# -> Bool
- (<#) :: Int# -> Int# -> Bool
- (<=#) :: Int# -> Int# -> Bool
- chr# :: Int# -> Char#
- int2Word# :: Int# -> Word#
- int2Float# :: Int# -> Float#
- int2Double# :: Int# -> Double#
- uncheckedIShiftL# :: Int# -> Int# -> Int#
- uncheckedIShiftRA# :: Int# -> Int# -> Int#
- uncheckedIShiftRL# :: Int# -> Int# -> Int#
- data Word#
- plusWord# :: Word# -> Word# -> Word#
- plusWord2# :: Word# -> Word# -> (#Word#, Word##)
- minusWord# :: Word# -> Word# -> Word#
- timesWord# :: Word# -> Word# -> Word#
- timesWord2# :: Word# -> Word# -> (#Word#, Word##)
- quotWord# :: Word# -> Word# -> Word#
- remWord# :: Word# -> Word# -> Word#
- quotRemWord# :: Word# -> Word# -> (#Word#, Word##)
- quotRemWord2# :: Word# -> Word# -> Word# -> (#Word#, Word##)
- and# :: Word# -> Word# -> Word#
- or# :: Word# -> Word# -> Word#
- xor# :: Word# -> Word# -> Word#
- not# :: Word# -> Word#
- uncheckedShiftL# :: Word# -> Int# -> Word#
- uncheckedShiftRL# :: Word# -> Int# -> Word#
- word2Int# :: Word# -> Int#
- gtWord# :: Word# -> Word# -> Bool
- geWord# :: Word# -> Word# -> Bool
- eqWord# :: Word# -> Word# -> Bool
- neWord# :: Word# -> Word# -> Bool
- ltWord# :: Word# -> Word# -> Bool
- leWord# :: Word# -> Word# -> Bool
- popCnt8# :: Word# -> Word#
- popCnt16# :: Word# -> Word#
- popCnt32# :: Word# -> Word#
- popCnt64# :: Word64# -> Word#
- popCnt# :: Word# -> Word#
- narrow8Int# :: Int# -> Int#
- narrow16Int# :: Int# -> Int#
- narrow32Int# :: Int# -> Int#
- narrow8Word# :: Word# -> Word#
- narrow16Word# :: Word# -> Word#
- narrow32Word# :: Word# -> Word#
- data Int64#
- data Word64#
- data Double#
- (>##) :: Double# -> Double# -> Bool
- (>=##) :: Double# -> Double# -> Bool
- (==##) :: Double# -> Double# -> Bool
- (/=##) :: Double# -> Double# -> Bool
- (<##) :: Double# -> Double# -> Bool
- (<=##) :: Double# -> Double# -> Bool
- (+##) :: Double# -> Double# -> Double#
- (-##) :: Double# -> Double# -> Double#
- (*##) :: Double# -> Double# -> Double#
- (/##) :: Double# -> Double# -> Double#
- negateDouble# :: Double# -> Double#
- double2Int# :: Double# -> Int#
- double2Float# :: Double# -> Float#
- expDouble# :: Double# -> Double#
- logDouble# :: Double# -> Double#
- sqrtDouble# :: Double# -> Double#
- sinDouble# :: Double# -> Double#
- cosDouble# :: Double# -> Double#
- tanDouble# :: Double# -> Double#
- asinDouble# :: Double# -> Double#
- acosDouble# :: Double# -> Double#
- atanDouble# :: Double# -> Double#
- sinhDouble# :: Double# -> Double#
- coshDouble# :: Double# -> Double#
- tanhDouble# :: Double# -> Double#
- (**##) :: Double# -> Double# -> Double#
- decodeDouble_2Int# :: Double# -> (#Int#, Word#, Word#, Int##)
- data Float#
- gtFloat# :: Float# -> Float# -> Bool
- geFloat# :: Float# -> Float# -> Bool
- eqFloat# :: Float# -> Float# -> Bool
- neFloat# :: Float# -> Float# -> Bool
- ltFloat# :: Float# -> Float# -> Bool
- leFloat# :: Float# -> Float# -> Bool
- plusFloat# :: Float# -> Float# -> Float#
- minusFloat# :: Float# -> Float# -> Float#
- timesFloat# :: Float# -> Float# -> Float#
- divideFloat# :: Float# -> Float# -> Float#
- negateFloat# :: Float# -> Float#
- float2Int# :: Float# -> Int#
- expFloat# :: Float# -> Float#
- logFloat# :: Float# -> Float#
- sqrtFloat# :: Float# -> Float#
- sinFloat# :: Float# -> Float#
- cosFloat# :: Float# -> Float#
- tanFloat# :: Float# -> Float#
- asinFloat# :: Float# -> Float#
- acosFloat# :: Float# -> Float#
- atanFloat# :: Float# -> Float#
- sinhFloat# :: Float# -> Float#
- coshFloat# :: Float# -> Float#
- tanhFloat# :: Float# -> Float#
- powerFloat# :: Float# -> Float# -> Float#
- float2Double# :: Float# -> Double#
- decodeFloat_Int# :: Float# -> (#Int#, Int##)
- data Array# a
- data MutableArray# s a
- newArray# :: Int# -> a -> State# s -> (#State# s, MutableArray# s a#)
- sameMutableArray# :: MutableArray# s a -> MutableArray# s a -> Bool
- readArray# :: MutableArray# s a -> Int# -> State# s -> (#State# s, a#)
- writeArray# :: MutableArray# s a -> Int# -> a -> State# s -> State# s
- sizeofArray# :: Array# a -> Int#
- sizeofMutableArray# :: MutableArray# s a -> Int#
- indexArray# :: Array# a -> Int# -> (#a#)
- unsafeFreezeArray# :: MutableArray# s a -> State# s -> (#State# s, Array# a#)
- unsafeThawArray# :: Array# a -> State# s -> (#State# s, MutableArray# s a#)
- copyArray# :: Array# a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
- copyMutableArray# :: MutableArray# s a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
- cloneArray# :: Array# a -> Int# -> Int# -> Array# a
- cloneMutableArray# :: MutableArray# s a -> Int# -> Int# -> State# s -> (#State# s, MutableArray# s a#)
- freezeArray# :: MutableArray# s a -> Int# -> Int# -> State# s -> (#State# s, Array# a#)
- thawArray# :: Array# a -> Int# -> Int# -> State# s -> (#State# s, MutableArray# s a#)
- data ByteArray#
- data MutableByteArray# s
- newByteArray# :: Int# -> State# s -> (#State# s, MutableByteArray# s#)
- newPinnedByteArray# :: Int# -> State# s -> (#State# s, MutableByteArray# s#)
- newAlignedPinnedByteArray# :: Int# -> Int# -> State# s -> (#State# s, MutableByteArray# s#)
- byteArrayContents# :: ByteArray# -> Addr#
- sameMutableByteArray# :: MutableByteArray# s -> MutableByteArray# s -> Bool
- unsafeFreezeByteArray# :: MutableByteArray# s -> State# s -> (#State# s, ByteArray##)
- sizeofByteArray# :: ByteArray# -> Int#
- sizeofMutableByteArray# :: MutableByteArray# s -> Int#
- indexCharArray# :: ByteArray# -> Int# -> Char#
- indexWideCharArray# :: ByteArray# -> Int# -> Char#
- indexIntArray# :: ByteArray# -> Int# -> Int#
- indexWordArray# :: ByteArray# -> Int# -> Word#
- indexAddrArray# :: ByteArray# -> Int# -> Addr#
- indexFloatArray# :: ByteArray# -> Int# -> Float#
- indexDoubleArray# :: ByteArray# -> Int# -> Double#
- indexStablePtrArray# :: ByteArray# -> Int# -> StablePtr# a
- indexInt8Array# :: ByteArray# -> Int# -> Int#
- indexInt16Array# :: ByteArray# -> Int# -> Int#
- indexInt32Array# :: ByteArray# -> Int# -> Int#
- indexInt64Array# :: ByteArray# -> Int# -> Int64#
- indexWord8Array# :: ByteArray# -> Int# -> Word#
- indexWord16Array# :: ByteArray# -> Int# -> Word#
- indexWord32Array# :: ByteArray# -> Int# -> Word#
- indexWord64Array# :: ByteArray# -> Int# -> Word64#
- readCharArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Char##)
- readWideCharArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Char##)
- readIntArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
- readWordArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
- readAddrArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Addr##)
- readFloatArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Float##)
- readDoubleArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Double##)
- readStablePtrArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, StablePtr# a#)
- readInt8Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
- readInt16Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
- readInt32Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
- readInt64Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int64##)
- readWord8Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
- readWord16Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
- readWord32Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
- readWord64Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word64##)
- writeCharArray# :: MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
- writeWideCharArray# :: MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
- writeIntArray# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- writeWordArray# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
- writeAddrArray# :: MutableByteArray# s -> Int# -> Addr# -> State# s -> State# s
- writeFloatArray# :: MutableByteArray# s -> Int# -> Float# -> State# s -> State# s
- writeDoubleArray# :: MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
- writeStablePtrArray# :: MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
- writeInt8Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- writeInt16Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- writeInt32Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- writeInt64Array# :: MutableByteArray# s -> Int# -> Int64# -> State# s -> State# s
- writeWord8Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
- writeWord16Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
- writeWord32Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
- writeWord64Array# :: MutableByteArray# s -> Int# -> Word64# -> State# s -> State# s
- copyByteArray# :: ByteArray# -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- copyMutableByteArray# :: MutableByteArray# s -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> State# s
- data ArrayArray#
- data MutableArrayArray# s
- newArrayArray# :: Int# -> State# s -> (#State# s, MutableArrayArray# s#)
- sameMutableArrayArray# :: MutableArrayArray# s -> MutableArrayArray# s -> Bool
- unsafeFreezeArrayArray# :: MutableArrayArray# s -> State# s -> (#State# s, ArrayArray##)
- sizeofArrayArray# :: ArrayArray# -> Int#
- sizeofMutableArrayArray# :: MutableArrayArray# s -> Int#
- indexByteArrayArray# :: ArrayArray# -> Int# -> ByteArray#
- indexArrayArrayArray# :: ArrayArray# -> Int# -> ArrayArray#
- readByteArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, ByteArray##)
- readMutableByteArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, MutableByteArray# s#)
- readArrayArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, ArrayArray##)
- readMutableArrayArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, MutableArrayArray# s#)
- writeByteArrayArray# :: MutableArrayArray# s -> Int# -> ByteArray# -> State# s -> State# s
- writeMutableByteArrayArray# :: MutableArrayArray# s -> Int# -> MutableByteArray# s -> State# s -> State# s
- writeArrayArrayArray# :: MutableArrayArray# s -> Int# -> ArrayArray# -> State# s -> State# s
- writeMutableArrayArrayArray# :: MutableArrayArray# s -> Int# -> MutableArrayArray# s -> State# s -> State# s
- copyArrayArray# :: ArrayArray# -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
- copyMutableArrayArray# :: MutableArrayArray# s -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
- data Addr#
- nullAddr# :: Addr#
- plusAddr# :: Addr# -> Int# -> Addr#
- minusAddr# :: Addr# -> Addr# -> Int#
- remAddr# :: Addr# -> Int# -> Int#
- addr2Int# :: Addr# -> Int#
- int2Addr# :: Int# -> Addr#
- gtAddr# :: Addr# -> Addr# -> Bool
- geAddr# :: Addr# -> Addr# -> Bool
- eqAddr# :: Addr# -> Addr# -> Bool
- neAddr# :: Addr# -> Addr# -> Bool
- ltAddr# :: Addr# -> Addr# -> Bool
- leAddr# :: Addr# -> Addr# -> Bool
- indexCharOffAddr# :: Addr# -> Int# -> Char#
- indexWideCharOffAddr# :: Addr# -> Int# -> Char#
- indexIntOffAddr# :: Addr# -> Int# -> Int#
- indexWordOffAddr# :: Addr# -> Int# -> Word#
- indexAddrOffAddr# :: Addr# -> Int# -> Addr#
- indexFloatOffAddr# :: Addr# -> Int# -> Float#
- indexDoubleOffAddr# :: Addr# -> Int# -> Double#
- indexStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a
- indexInt8OffAddr# :: Addr# -> Int# -> Int#
- indexInt16OffAddr# :: Addr# -> Int# -> Int#
- indexInt32OffAddr# :: Addr# -> Int# -> Int#
- indexInt64OffAddr# :: Addr# -> Int# -> Int64#
- indexWord8OffAddr# :: Addr# -> Int# -> Word#
- indexWord16OffAddr# :: Addr# -> Int# -> Word#
- indexWord32OffAddr# :: Addr# -> Int# -> Word#
- indexWord64OffAddr# :: Addr# -> Int# -> Word64#
- readCharOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Char##)
- readWideCharOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Char##)
- readIntOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int##)
- readWordOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Word##)
- readAddrOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Addr##)
- readFloatOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Float##)
- readDoubleOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Double##)
- readStablePtrOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, StablePtr# a#)
- readInt8OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int##)
- readInt16OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int##)
- readInt32OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int##)
- readInt64OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int64##)
- readWord8OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Word##)
- readWord16OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Word##)
- readWord32OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Word##)
- readWord64OffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Word64##)
- writeCharOffAddr# :: Addr# -> Int# -> Char# -> State# s -> State# s
- writeWideCharOffAddr# :: Addr# -> Int# -> Char# -> State# s -> State# s
- writeIntOffAddr# :: Addr# -> Int# -> Int# -> State# s -> State# s
- writeWordOffAddr# :: Addr# -> Int# -> Word# -> State# s -> State# s
- writeAddrOffAddr# :: Addr# -> Int# -> Addr# -> State# s -> State# s
- writeFloatOffAddr# :: Addr# -> Int# -> Float# -> State# s -> State# s
- writeDoubleOffAddr# :: Addr# -> Int# -> Double# -> State# s -> State# s
- writeStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a -> State# s -> State# s
- writeInt8OffAddr# :: Addr# -> Int# -> Int# -> State# s -> State# s
- writeInt16OffAddr# :: Addr# -> Int# -> Int# -> State# s -> State# s
- writeInt32OffAddr# :: Addr# -> Int# -> Int# -> State# s -> State# s
- writeInt64OffAddr# :: Addr# -> Int# -> Int64# -> State# s -> State# s
- writeWord8OffAddr# :: Addr# -> Int# -> Word# -> State# s -> State# s
- writeWord16OffAddr# :: Addr# -> Int# -> Word# -> State# s -> State# s
- writeWord32OffAddr# :: Addr# -> Int# -> Word# -> State# s -> State# s
- writeWord64OffAddr# :: Addr# -> Int# -> Word64# -> State# s -> State# s
- data MutVar# s a
- newMutVar# :: a -> State# s -> (#State# s, MutVar# s a#)
- readMutVar# :: MutVar# s a -> State# s -> (#State# s, a#)
- writeMutVar# :: MutVar# s a -> a -> State# s -> State# s
- sameMutVar# :: MutVar# s a -> MutVar# s a -> Bool
- atomicModifyMutVar# :: MutVar# s a -> (a -> b) -> State# s -> (#State# s, c#)
- casMutVar# :: MutVar# s a -> a -> a -> State# s -> (#State# s, Int#, a#)
- catch# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (b -> State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- raise# :: a -> b
- raiseIO# :: a -> State# RealWorld -> (#State# RealWorld, b#)
- maskAsyncExceptions# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- maskUninterruptible# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- unmaskAsyncExceptions# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- getMaskingState# :: State# RealWorld -> (#State# RealWorld, Int##)
- data TVar# s a
- atomically# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- retry# :: State# RealWorld -> (#State# RealWorld, a#)
- catchRetry# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- catchSTM# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (b -> State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
- check# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, ()#)
- newTVar# :: a -> State# s -> (#State# s, TVar# s a#)
- readTVar# :: TVar# s a -> State# s -> (#State# s, a#)
- readTVarIO# :: TVar# s a -> State# s -> (#State# s, a#)
- writeTVar# :: TVar# s a -> a -> State# s -> State# s
- sameTVar# :: TVar# s a -> TVar# s a -> Bool
- data MVar# s a
- newMVar# :: State# s -> (#State# s, MVar# s a#)
- takeMVar# :: MVar# s a -> State# s -> (#State# s, a#)
- tryTakeMVar# :: MVar# s a -> State# s -> (#State# s, Int#, a#)
- putMVar# :: MVar# s a -> a -> State# s -> State# s
- tryPutMVar# :: MVar# s a -> a -> State# s -> (#State# s, Int##)
- sameMVar# :: MVar# s a -> MVar# s a -> Bool
- isEmptyMVar# :: MVar# s a -> State# s -> (#State# s, Int##)
- delay# :: Int# -> State# s -> State# s
- waitRead# :: Int# -> State# s -> State# s
- waitWrite# :: Int# -> State# s -> State# s
- data State# s
- data RealWorld
- data ThreadId#
- fork# :: a -> State# RealWorld -> (#State# RealWorld, ThreadId##)
- forkOn# :: Int# -> a -> State# RealWorld -> (#State# RealWorld, ThreadId##)
- killThread# :: ThreadId# -> a -> State# RealWorld -> State# RealWorld
- yield# :: State# RealWorld -> State# RealWorld
- myThreadId# :: State# RealWorld -> (#State# RealWorld, ThreadId##)
- labelThread# :: ThreadId# -> Addr# -> State# RealWorld -> State# RealWorld
- isCurrentThreadBound# :: State# RealWorld -> (#State# RealWorld, Int##)
- noDuplicate# :: State# RealWorld -> State# RealWorld
- threadStatus# :: ThreadId# -> State# RealWorld -> (#State# RealWorld, Int#, Int#, Int##)
- data Weak# b
- mkWeak# :: o -> b -> c -> State# RealWorld -> (#State# RealWorld, Weak# b#)
- mkWeakNoFinalizer# :: o -> b -> State# RealWorld -> (#State# RealWorld, Weak# b#)
- mkWeakForeignEnv# :: o -> b -> Addr# -> Addr# -> Int# -> Addr# -> State# RealWorld -> (#State# RealWorld, Weak# b#)
- deRefWeak# :: Weak# a -> State# RealWorld -> (#State# RealWorld, Int#, a#)
- finalizeWeak# :: Weak# a -> State# RealWorld -> (#State# RealWorld, Int#, State# RealWorld -> (#State# RealWorld, ()#)#)
- touch# :: o -> State# RealWorld -> State# RealWorld
- data StablePtr# a
- data StableName# a
- makeStablePtr# :: a -> State# RealWorld -> (#State# RealWorld, StablePtr# a#)
- deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (#State# RealWorld, a#)
- eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int#
- makeStableName# :: a -> State# RealWorld -> (#State# RealWorld, StableName# a#)
- eqStableName# :: StableName# a -> StableName# a -> Int#
- stableNameToInt# :: StableName# a -> Int#
- reallyUnsafePtrEquality# :: a -> a -> Int#
- par# :: a -> Int#
- spark# :: a -> State# s -> (#State# s, a#)
- seq# :: a -> State# s -> (#State# s, a#)
- getSpark# :: State# s -> (#State# s, Int#, a#)
- numSparks# :: State# s -> (#State# s, Int##)
- parGlobal# :: a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
- parLocal# :: a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
- parAt# :: b -> a -> Int# -> Int# -> Int# -> Int# -> c -> Int#
- parAtAbs# :: a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
- parAtRel# :: a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
- parAtForNow# :: b -> a -> Int# -> Int# -> Int# -> Int# -> c -> Int#
- dataToTag# :: a -> Int#
- tagToEnum# :: Int# -> a
- data BCO#
- addrToAny# :: Addr# -> (#a#)
- mkApUpd0# :: BCO# -> (#a#)
- newBCO# :: ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# s -> (#State# s, BCO##)
- unpackClosure# :: a -> (#Addr#, Array# b, ByteArray##)
- getApStackVal# :: a -> Int# -> (#Int#, b#)
- getCCSOf# :: a -> State# s -> (#State# s, Addr##)
- getCurrentCCS# :: a -> State# s -> (#State# s, Addr##)
- seq :: a -> b -> b
- inline :: a -> a
- lazy :: a -> a
- data Any k
- data AnyK
- unsafeCoerce# :: a -> b
- traceEvent# :: Addr# -> State# s -> State# s
The word size story.
Haskell98 specifies that signed integers (type Int
)
must contain at least 30 bits. GHC always implements Int
using the primitive type Int#
, whose size equals
the MachDeps.h
constant WORD_SIZE_IN_BITS
.
This is normally set based on the config.h
parameter
SIZEOF_HSWORD
, i.e., 32 bits on 32-bit machines, 64
bits on 64-bit machines. However, it can also be explicitly
set to a smaller number, e.g., 31 bits, to allow the
possibility of using tag bits. Currently GHC itself has only
32-bit and 64-bit variants, but 30 or 31-bit code can be
exported as an external core file for use in other back ends.
GHC also implements a primitive unsigned integer type Word#
which always has the same number of bits as Int#
.
In addition, GHC supports families of explicit-sized integers
and words at 8, 16, 32, and 64 bits, with the usual
arithmetic operations, comparisons, and a range of
conversions. The 8-bit and 16-bit sizes are always
represented as Int#
and Word#
, and the
operations implemented in terms of the the primops on these
types, with suitable range restrictions on the results (using
the narrow$n$Int#
and narrow$n$Word#
families
of primops. The 32-bit sizes are represented using Int#
and Word#
when WORD_SIZE_IN_BITS
$geq$ 32; otherwise, these are represented using distinct
primitive types Int32#
and Word32#
. These (when
needed) have a complete set of corresponding operations;
however, nearly all of these are implemented as external C
functions rather than as primops. Exactly the same story
applies to the 64-bit sizes. All of these details are hidden
under the PrelInt
and PrelWord
modules, which use
#if
-defs to invoke the appropriate types and
operators.
Word size also matters for the families of primops for
indexing/reading/writing fixed-size quantities at offsets
from an array base, address, or foreign pointer. Here, a
slightly different approach is taken. The names of these
primops are fixed, but their types vary according to
the value of WORD_SIZE_IN_BITS
. For example, if word
size is at least 32 bits then an operator like
indexInt32Array#
has type ByteArray# -> Int# -> Int#
; otherwise it has type ByteArray# -> Int# -> Int32#
. This approach confines the necessary #if
-defs to this file; no conditional compilation is needed
in the files that expose these primops.
Finally, there are strongly deprecated primops for coercing
between Addr#
, the primitive type of machine
addresses, and Int#
. These are pretty bogus anyway,
but will work on existing 32-bit and 64-bit GHC targets; they
are completely bogus when tag bits are used in Int#
,
so are not available in this case.
Char#
Operations on 31-bit characters.
data Char#
Int#
Operations on native-size integers (30+ bits).
data Int#
mulIntMayOflo# :: Int# -> Int# -> Int#
Return non-zero if there is any possibility that the upper word of a signed integer multiply might contain useful information. Return zero only if you are completely sure that no overflow can occur. On a 32-bit platform, the recommmended implementation is to do a 32 x 32 -> 64 signed multiply, and subtract result[63:32] from (result[31] >>signed 31). If this is zero, meaning that the upper word is merely a sign extension of the lower one, no overflow can occur.
On a 64-bit platform it is not always possible to acquire the top 64 bits of the result. Therefore, a recommended implementation is to take the absolute value of both operands, and return 0 iff bits[63:31] of them are zero, since that means that their magnitudes fit within 31 bits, so the magnitude of the product must fit into 62 bits.
If in doubt, return non-zero, but do make an effort to create the
correct answer for small args, since otherwise the performance of
(*) :: Integer -> Integer -> Integer
will be poor.
quotRemInt# :: Int# -> Int# -> (#Int#, Int##)
Rounds towards zero.
negateInt# :: Int# -> Int#
addIntC# :: Int# -> Int# -> (#Int#, Int##)
Add with carry. First member of result is (wrapped) sum; second member is 0 iff no overflow occured.
subIntC# :: Int# -> Int# -> (#Int#, Int##)
Subtract with carry. First member of result is (wrapped) difference; second member is 0 iff no overflow occured.
int2Float# :: Int# -> Float#
int2Double# :: Int# -> Double#
uncheckedIShiftL# :: Int# -> Int# -> Int#
Shift left. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.
uncheckedIShiftRA# :: Int# -> Int# -> Int#
Shift right arithmetic. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.
uncheckedIShiftRL# :: Int# -> Int# -> Int#
Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.
Word#
Operations on native-sized unsigned words (30+ bits).
data Word#
plusWord2# :: Word# -> Word# -> (#Word#, Word##)
minusWord# :: Word# -> Word# -> Word#
timesWord# :: Word# -> Word# -> Word#
timesWord2# :: Word# -> Word# -> (#Word#, Word##)
quotRemWord# :: Word# -> Word# -> (#Word#, Word##)
uncheckedShiftL# :: Word# -> Int# -> Word#
Shift left logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.
uncheckedShiftRL# :: Word# -> Int# -> Word#
Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.
Narrowings
Explicit narrowing of native-sized ints or words.
narrow8Int# :: Int# -> Int#
narrow16Int# :: Int# -> Int#
narrow32Int# :: Int# -> Int#
narrow8Word# :: Word# -> Word#
narrow16Word# :: Word# -> Word#
narrow32Word# :: Word# -> Word#
Int64#
Operations on 64-bit unsigned words. This type is only used
if plain Int#
has less than 64 bits. In any case, the operations
are not primops; they are implemented (if needed) as ccalls instead.
data Int64#
Word64#
Operations on 64-bit unsigned words. This type is only used
if plain Word#
has less than 64 bits. In any case, the operations
are not primops; they are implemented (if needed) as ccalls instead.
data Word64#
Double#
Operations on double-precision (64 bit) floating-point numbers.
data Double#
negateDouble# :: Double# -> Double#
double2Int# :: Double# -> Int#
double2Float# :: Double# -> Float#
expDouble# :: Double# -> Double#
logDouble# :: Double# -> Double#
sqrtDouble# :: Double# -> Double#
sinDouble# :: Double# -> Double#
cosDouble# :: Double# -> Double#
tanDouble# :: Double# -> Double#
asinDouble# :: Double# -> Double#
acosDouble# :: Double# -> Double#
atanDouble# :: Double# -> Double#
sinhDouble# :: Double# -> Double#
coshDouble# :: Double# -> Double#
tanhDouble# :: Double# -> Double#
decodeDouble_2Int# :: Double# -> (#Int#, Word#, Word#, Int##)
Convert to integer. First component of the result is -1 or 1, indicating the sign of the mantissa. The next two are the high and low 32 bits of the mantissa respectively, and the last is the exponent.
Float#
Operations on single-precision (32-bit) floating-point numbers.
data Float#
plusFloat# :: Float# -> Float# -> Float#
minusFloat# :: Float# -> Float# -> Float#
timesFloat# :: Float# -> Float# -> Float#
divideFloat# :: Float# -> Float# -> Float#
negateFloat# :: Float# -> Float#
float2Int# :: Float# -> Int#
sqrtFloat# :: Float# -> Float#
asinFloat# :: Float# -> Float#
acosFloat# :: Float# -> Float#
atanFloat# :: Float# -> Float#
sinhFloat# :: Float# -> Float#
coshFloat# :: Float# -> Float#
tanhFloat# :: Float# -> Float#
powerFloat# :: Float# -> Float# -> Float#
float2Double# :: Float# -> Double#
decodeFloat_Int# :: Float# -> (#Int#, Int##)
Convert to integers.
First Int#
in result is the mantissa; second is the exponent.
Arrays
Operations on Array#
.
data Array# a
data MutableArray# s a
newArray# :: Int# -> a -> State# s -> (#State# s, MutableArray# s a#)
Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.
sameMutableArray# :: MutableArray# s a -> MutableArray# s a -> Bool
readArray# :: MutableArray# s a -> Int# -> State# s -> (#State# s, a#)
Read from specified index of mutable array. Result is not yet evaluated.
writeArray# :: MutableArray# s a -> Int# -> a -> State# s -> State# s
Write to specified index of mutable array.
sizeofArray# :: Array# a -> Int#
Return the number of elements in the array.
sizeofMutableArray# :: MutableArray# s a -> Int#
Return the number of elements in the array.
indexArray# :: Array# a -> Int# -> (#a#)
Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.
unsafeFreezeArray# :: MutableArray# s a -> State# s -> (#State# s, Array# a#)
Make a mutable array immutable, without copying.
unsafeThawArray# :: Array# a -> State# s -> (#State# s, MutableArray# s a#)
Make an immutable array mutable, without copying.
copyArray# :: Array# a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
copyMutableArray# :: MutableArray# s a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
cloneArray# :: Array# a -> Int# -> Int# -> Array# a
cloneMutableArray# :: MutableArray# s a -> Int# -> Int# -> State# s -> (#State# s, MutableArray# s a#)
freezeArray# :: MutableArray# s a -> Int# -> Int# -> State# s -> (#State# s, Array# a#)
thawArray# :: Array# a -> Int# -> Int# -> State# s -> (#State# s, MutableArray# s a#)
Byte Arrays
Operations on ByteArray#
. A ByteArray#
is a just a region of
raw memory in the garbage-collected heap, which is not
scanned for pointers. It carries its own size (in bytes).
There are
three sets of operations for accessing byte array contents:
index for reading from immutable byte arrays, and read/write
for mutable byte arrays. Each set contains operations for a
range of useful primitive data types. Each operation takes
an offset measured in terms of the size of the primitive type
being read or written.
data ByteArray#
data MutableByteArray# s
newByteArray# :: Int# -> State# s -> (#State# s, MutableByteArray# s#)
Create a new mutable byte array of specified size (in bytes), in the specified state thread.
newPinnedByteArray# :: Int# -> State# s -> (#State# s, MutableByteArray# s#)
Create a mutable byte array that the GC guarantees not to move.
newAlignedPinnedByteArray# :: Int# -> Int# -> State# s -> (#State# s, MutableByteArray# s#)
Create a mutable byte array, aligned by the specified amount, that the GC guarantees not to move.
byteArrayContents# :: ByteArray# -> Addr#
Intended for use with pinned arrays; otherwise very unsafe!
sameMutableByteArray# :: MutableByteArray# s -> MutableByteArray# s -> Bool
unsafeFreezeByteArray# :: MutableByteArray# s -> State# s -> (#State# s, ByteArray##)
Make a mutable byte array immutable, without copying.
sizeofByteArray# :: ByteArray# -> Int#
Return the size of the array in bytes.
sizeofMutableByteArray# :: MutableByteArray# s -> Int#
Return the size of the array in bytes.
indexCharArray# :: ByteArray# -> Int# -> Char#
Read 8-bit character; offset in bytes.
indexWideCharArray# :: ByteArray# -> Int# -> Char#
Read 31-bit character; offset in 4-byte words.
indexIntArray# :: ByteArray# -> Int# -> Int#
indexWordArray# :: ByteArray# -> Int# -> Word#
indexAddrArray# :: ByteArray# -> Int# -> Addr#
indexFloatArray# :: ByteArray# -> Int# -> Float#
indexDoubleArray# :: ByteArray# -> Int# -> Double#
indexStablePtrArray# :: ByteArray# -> Int# -> StablePtr# a
indexInt8Array# :: ByteArray# -> Int# -> Int#
indexInt16Array# :: ByteArray# -> Int# -> Int#
indexInt32Array# :: ByteArray# -> Int# -> Int#
indexInt64Array# :: ByteArray# -> Int# -> Int64#
indexWord8Array# :: ByteArray# -> Int# -> Word#
indexWord16Array# :: ByteArray# -> Int# -> Word#
indexWord32Array# :: ByteArray# -> Int# -> Word#
indexWord64Array# :: ByteArray# -> Int# -> Word64#
readCharArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Char##)
Read 8-bit character; offset in bytes.
readWideCharArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Char##)
Read 31-bit character; offset in 4-byte words.
readIntArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
readWordArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
readAddrArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Addr##)
readFloatArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Float##)
readDoubleArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Double##)
readStablePtrArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, StablePtr# a#)
readInt8Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
readInt16Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
readInt32Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int##)
readInt64Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int64##)
readWord8Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
readWord16Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
readWord32Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word##)
readWord64Array# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Word64##)
writeCharArray# :: MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
Write 8-bit character; offset in bytes.
writeWideCharArray# :: MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
Write 31-bit character; offset in 4-byte words.
writeIntArray# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
writeWordArray# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
writeAddrArray# :: MutableByteArray# s -> Int# -> Addr# -> State# s -> State# s
writeFloatArray# :: MutableByteArray# s -> Int# -> Float# -> State# s -> State# s
writeDoubleArray# :: MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
writeStablePtrArray# :: MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
writeInt8Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
writeInt16Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
writeInt32Array# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
writeInt64Array# :: MutableByteArray# s -> Int# -> Int64# -> State# s -> State# s
writeWord8Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
writeWord16Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
writeWord32Array# :: MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
writeWord64Array# :: MutableByteArray# s -> Int# -> Word64# -> State# s -> State# s
copyByteArray# :: ByteArray# -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
copyMutableByteArray# :: MutableByteArray# s -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> State# s
Set the range of the MutableByteArray# to the specified character.
Arrays of arrays
Operations on ArrayArray#
. An ArrayArray#
contains references to {em unpointed}
arrays, such as ByteArray#s
. Hence, it is not parameterised by the element types,
just like a ByteArray#
, but it needs to be scanned during GC, just like an Array#
.
We represent an ArrayArray#
exactly as a Array#
, but provide element-type-specific
indexing, reading, and writing.
data ArrayArray#
data MutableArrayArray# s
newArrayArray# :: Int# -> State# s -> (#State# s, MutableArrayArray# s#)
Create a new mutable array of arrays with the specified number of elements, in the specified state thread, with each element recursively referring to the newly created array.
sameMutableArrayArray# :: MutableArrayArray# s -> MutableArrayArray# s -> Bool
unsafeFreezeArrayArray# :: MutableArrayArray# s -> State# s -> (#State# s, ArrayArray##)
Make a mutable array of arrays immutable, without copying.
sizeofArrayArray# :: ArrayArray# -> Int#
Return the number of elements in the array.
sizeofMutableArrayArray# :: MutableArrayArray# s -> Int#
Return the number of elements in the array.
indexByteArrayArray# :: ArrayArray# -> Int# -> ByteArray#
indexArrayArrayArray# :: ArrayArray# -> Int# -> ArrayArray#
readByteArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, ByteArray##)
readMutableByteArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, MutableByteArray# s#)
readArrayArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, ArrayArray##)
readMutableArrayArrayArray# :: MutableArrayArray# s -> Int# -> State# s -> (#State# s, MutableArrayArray# s#)
writeByteArrayArray# :: MutableArrayArray# s -> Int# -> ByteArray# -> State# s -> State# s
writeMutableByteArrayArray# :: MutableArrayArray# s -> Int# -> MutableByteArray# s -> State# s -> State# s
writeArrayArrayArray# :: MutableArrayArray# s -> Int# -> ArrayArray# -> State# s -> State# s
writeMutableArrayArrayArray# :: MutableArrayArray# s -> Int# -> MutableArrayArray# s -> State# s -> State# s
copyArrayArray# :: ArrayArray# -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
copyMutableArrayArray# :: MutableArrayArray# s -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
Copy a range of the first MutableArrayArray# to the specified region in the second MutableArrayArray#. Both arrays must fully contain the specified ranges, but this is not checked.
Addr#
data Addr#
An arbitrary machine address assumed to point outside the garbage-collected heap.
minusAddr# :: Addr# -> Addr# -> Int#
Result is meaningless if two Addr#
s are so far apart that their
difference doesn't fit in an Int#
.
remAddr# :: Addr# -> Int# -> Int#
Return the remainder when the Addr#
arg, treated like an Int#
,
is divided by the Int#
arg.
indexCharOffAddr# :: Addr# -> Int# -> Char#
Reads 8-bit character; offset in bytes.
indexWideCharOffAddr# :: Addr# -> Int# -> Char#
Reads 31-bit character; offset in 4-byte words.
indexIntOffAddr# :: Addr# -> Int# -> Int#
indexWordOffAddr# :: Addr# -> Int# -> Word#
indexAddrOffAddr# :: Addr# -> Int# -> Addr#
indexFloatOffAddr# :: Addr# -> Int# -> Float#
indexDoubleOffAddr# :: Addr# -> Int# -> Double#
indexStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a
indexInt8OffAddr# :: Addr# -> Int# -> Int#
indexInt16OffAddr# :: Addr# -> Int# -> Int#
indexInt32OffAddr# :: Addr# -> Int# -> Int#
indexInt64OffAddr# :: Addr# -> Int# -> Int64#
indexWord8OffAddr# :: Addr# -> Int# -> Word#
indexWord16OffAddr# :: Addr# -> Int# -> Word#
indexWord32OffAddr# :: Addr# -> Int# -> Word#
indexWord64OffAddr# :: Addr# -> Int# -> Word64#
readCharOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Char##)
Reads 8-bit character; offset in bytes.
readWideCharOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Char##)
Reads 31-bit character; offset in 4-byte words.
readStablePtrOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, StablePtr# a#)
writeStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a -> State# s -> State# s
Mutable variables
Operations on MutVar#s.
data MutVar# s a
A MutVar#
behaves like a single-element mutable array.
newMutVar# :: a -> State# s -> (#State# s, MutVar# s a#)
Create MutVar#
with specified initial value in specified state thread.
readMutVar# :: MutVar# s a -> State# s -> (#State# s, a#)
Read contents of MutVar#
. Result is not yet evaluated.
writeMutVar# :: MutVar# s a -> a -> State# s -> State# s
Write contents of MutVar#
.
sameMutVar# :: MutVar# s a -> MutVar# s a -> Bool
atomicModifyMutVar# :: MutVar# s a -> (a -> b) -> State# s -> (#State# s, c#)
casMutVar# :: MutVar# s a -> a -> a -> State# s -> (#State# s, Int#, a#)
Exceptions
catch# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (b -> State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
raise# :: a -> b
maskAsyncExceptions# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
maskUninterruptible# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
unmaskAsyncExceptions# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
STM-accessible Mutable Variables
data TVar# s a
atomically# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
catchRetry# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
catchSTM# :: (State# RealWorld -> (#State# RealWorld, a#)) -> (b -> State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, a#)
check# :: (State# RealWorld -> (#State# RealWorld, a#)) -> State# RealWorld -> (#State# RealWorld, ()#)
newTVar# :: a -> State# s -> (#State# s, TVar# s a#)
Create a new TVar#
holding a specified initial value.
readTVar# :: TVar# s a -> State# s -> (#State# s, a#)
Read contents of TVar#
. Result is not yet evaluated.
readTVarIO# :: TVar# s a -> State# s -> (#State# s, a#)
Read contents of TVar#
outside an STM transaction
writeTVar# :: TVar# s a -> a -> State# s -> State# s
Write contents of TVar#
.
Synchronized Mutable Variables
Operations on MVar#
s.
data MVar# s a
A shared mutable variable (not the same as a MutVar#
!).
(Note: in a non-concurrent implementation, (MVar# a)
can be
represented by (MutVar# (Maybe a))
.)
takeMVar# :: MVar# s a -> State# s -> (#State# s, a#)
If MVar#
is empty, block until it becomes full.
Then remove and return its contents, and set it empty.
tryTakeMVar# :: MVar# s a -> State# s -> (#State# s, Int#, a#)
If MVar#
is empty, immediately return with integer 0 and value undefined.
Otherwise, return with integer 1 and contents of MVar#
, and set MVar#
empty.
putMVar# :: MVar# s a -> a -> State# s -> State# s
If MVar#
is full, block until it becomes empty.
Then store value arg as its new contents.
tryPutMVar# :: MVar# s a -> a -> State# s -> (#State# s, Int##)
If MVar#
is full, immediately return with integer 0.
Otherwise, store value arg as MVar#
's new contents, and return with integer 1.
isEmptyMVar# :: MVar# s a -> State# s -> (#State# s, Int##)
Return 1 if MVar#
is empty; 0 otherwise.
Delay/wait operations
waitRead# :: Int# -> State# s -> State# s
Block until input is available on specified file descriptor.
waitWrite# :: Int# -> State# s -> State# s
Block until output is possible on specified file descriptor.
Concurrency primitives
data State# s
State#
is the primitive, unlifted type of states. It has
one type parameter, thus State# RealWorld
, or State# s
,
where s is a type variable. The only purpose of the type parameter
is to keep different state threads separate. It is represented by
nothing at all.
data RealWorld
RealWorld
is deeply magical. It is primitive, but it is not
unlifted (hence ptrArg
). We never manipulate values of type
RealWorld
; it's only used in the type system, to parameterise State#
.
data ThreadId#
(In a non-concurrent implementation, this can be a singleton
type, whose (unique) value is returned by myThreadId#
. The
other operations can be omitted.)
Weak pointers
data Weak# b
mkWeakForeignEnv# :: o -> b -> Addr# -> Addr# -> Int# -> Addr# -> State# RealWorld -> (#State# RealWorld, Weak# b#)
finalizeWeak# :: Weak# a -> State# RealWorld -> (#State# RealWorld, Int#, State# RealWorld -> (#State# RealWorld, ()#)#)
Stable pointers and names
data StablePtr# a
data StableName# a
makeStablePtr# :: a -> State# RealWorld -> (#State# RealWorld, StablePtr# a#)
deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (#State# RealWorld, a#)
eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int#
makeStableName# :: a -> State# RealWorld -> (#State# RealWorld, StableName# a#)
eqStableName# :: StableName# a -> StableName# a -> Int#
stableNameToInt# :: StableName# a -> Int#
Unsafe pointer equality
reallyUnsafePtrEquality# :: a -> a -> Int#
Parallelism
numSparks# :: State# s -> (#State# s, Int##)
Returns the number of sparks in the local spark pool.
Tag to enum stuff
Convert back and forth between values of enumerated types and small integers.
dataToTag# :: a -> Int#
tagToEnum# :: Int# -> a
Bytecode operations
Support for the bytecode interpreter and linker.
data BCO#
Primitive bytecode type.
addrToAny# :: Addr# -> (#a#)
Convert an Addr#
to a followable Any type.
newBCO# :: ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# s -> (#State# s, BCO##)
unpackClosure# :: a -> (#Addr#, Array# b, ByteArray##)
getApStackVal# :: a -> Int# -> (#Int#, b#)
Misc
These aren't nearly as wired in as Etc...
getCurrentCCS# :: a -> State# s -> (#State# s, Addr##)
Returns the current CostCentreStack
(value is NULL
if
not profiling). Takes a dummy argument which can be used to
avoid the call to getCCCS#
being floated out by the
simplifier, which would result in an uninformative stack
("CAF").
Etc
Miscellaneous built-ins
seq :: a -> b -> b
Evaluates its first argument to head normal form, and then returns its second argument as the result.
inline :: a -> a
The call (inline f)
arranges that f is inlined, regardless of its size.
More precisely, the call (inline f)
rewrites to the right-hand side of
f
's definition. This allows the programmer to control inlining from a
particular call site rather than the definition site of the function (c.f.
INLINE
pragmas in User's Guide, Section 7.10.3, "INLINE and NOINLINE
pragmas").
This inlining occurs regardless of the argument to the call or the size of
f
's definition; it is unconditional. The main caveat is that f
's
definition must be visible to the compiler. That is, f
must be
let
-bound in the current scope. If no inlining takes place, the
inline
function expands to the identity function in Phase zero; so its
use imposes no overhead.
It is good practice to mark the function with an INLINABLE pragma at its definition, (a) so that GHC guarantees to expose its unfolding regardless of size, and (b) so that you have control over exactly what is inlined.
lazy :: a -> a
The lazy
function restrains strictness analysis a little. The call
(lazy e)
means the same as e
, but lazy
has a magical
property so far as strictness analysis is concerned: it is lazy in its first
argument, even though its semantics is strict. After strictness analysis has
run, calls to lazy
are inlined to be the identity function.
This behaviour is occasionally useful when controlling evaluation order.
Notably, lazy
is used in the library definition of Control.Parallel.par
:
par :: a -> b -> b
par x y = case (par# x) of _ -> lazy y
If lazy
were not lazy, par
would look strict in y
which
would defeat the whole purpose of par
.
Like seq
, the argument of lazy
can have an unboxed type.
data Any k
The type constructor Any
is type to which you can unsafely coerce any
lifted type, and back.
- It is lifted, and hence represented by a pointer
- It does not claim to be a data type, and that's important for the code generator, because the code gen may enter a data value but never enters a function value.
It's also used to instantiate un-constrained type variables after type
checking. For example, length
has type
length :: forall a. [a] -> Int
and the list datacon for the empty list has type
[] :: forall a. [a]
In order to compose these two terms as length []
a type
application is required, but there is no constraint on the
choice. In this situation GHC uses Any
:
length (Any *) ([] (Any *))
Note that Any
is kind polymorphic, and takes a kind k
as its
first argument. The kind of Any
is thus forall k. k -> k
.
data AnyK
The kind AnyK
is the kind level counterpart to Any
. In a
kind polymorphic setting, a similar example to the length of the empty
list can be given at the type level:
type family Length (l :: [k]) :: Nat
type instance Length [] = Zero
When Length
is applied to the empty (promoted) list it will have
the kind Length AnyK []
.
AnyK
is currently not exported and cannot be used directly, but
you might see it in debug output from the compiler.
unsafeCoerce# :: a -> b
The function unsafeCoerce#
allows you to side-step the typechecker entirely. That
is, it allows you to coerce any type into any other type. If you use this function,
you had better get it right, otherwise segmentation faults await. It is generally
used when you want to write a program that you know is well-typed, but where Haskell's
type system is not expressive enough to prove that it is well typed.
The following uses of unsafeCoerce#
are supposed to work (i.e. not lead to
spurious compile-time or run-time crashes):
- Casting any lifted type to
Any
- Casting
Any
back to the real type - Casting an unboxed type to another unboxed type of the same size (but not coercions between floating-point and integral types)
- Casting between two types that have the same runtime representation. One case is when
the two types differ only in "phantom" type parameters, for example
Ptr Int
toPtr Float
, or[Int]
to[Float]
when the list is known to be empty. Also, anewtype
of a typeT
has the same representation at runtime asT
.
Other uses of unsafeCoerce#
are undefined. In particular, you should not use
unsafeCoerce#
to cast a T to an algebraic data type D, unless T is also
an algebraic data type. For example, do not cast Int->Int
to Bool
, even if
you later cast that Bool
back to Int->Int
before applying it. The reasons
have to do with GHC's internal representation details (for the congnoscenti, data values
can be entered but function closures cannot). If you want a safe type to cast things
to, use Any
, which is not an algebraic data type.
traceEvent# :: Addr# -> State# s -> State# s
Emits an event via the RTS tracing framework. The contents of the event is the zero-terminated byte string passed as the first argument. The event will be emitted either to the .eventlog file, or to stderr, depending on the runtime RTS flags.