salloc

Section: Slurm Commands (1)
Updated: Slurm Commands
Index

 

NAME

salloc - Obtain a Slurm job allocation (a set of nodes), execute a command, and then release the allocation when the command is finished.

 

SYNOPSIS

salloc [OPTIONS(0)...] [ : [OPTIONS(N)...]] [command(0) [args(0)...]]

Option(s) define multiple jobs in a co-scheduled heterogeneous job. For more details about heterogeneous jobs see the document
https://slurm.schedmd.com/heterogeneous_jobs.html

 

DESCRIPTION

salloc is used to allocate a Slurm job allocation, which is a set of resources (nodes), possibly with some set of constraints (e.g. number of processors per node). When salloc successfully obtains the requested allocation, it then runs the command specified by the user. Finally, when the user specified command is complete, salloc relinquishes the job allocation.

The command may be any program the user wishes. Some typical commands are xterm, a shell script containing srun commands, and srun (see the EXAMPLES section). If no command is specified, then salloc runs the user's default shell.

The following document describes the influence of various options on the allocation of cpus to jobs and tasks.
https://slurm.schedmd.com/cpu_management.html

NOTE: The salloc logic includes support to save and restore the terminal line settings and is designed to be executed in the foreground. If you need to execute salloc in the background, set its standard input to some file, for example: "salloc -n16 a.out </dev/null &"

 

RETURN VALUE

If salloc is unable to execute the user command, it will return 1 and print errors to stderr. Else if success or if killed by signals HUP, INT, KILL, or QUIT: it will return 0.

 

COMMAND PATH RESOLUTION

If provided, the command is resolved in the following order:

1. If command starts with ".", then path is constructed as: current working directory / command
2. If command starts with a "/", then path is considered absolute.
3. If command can be resolved through PATH. See path_resolution(7).
4. If command is in current working directory.

Current working directory is the calling process working directory unless the --chdir argument is passed, which will override the current working directory.

 

OPTIONS

-A, --account=<account>
Charge resources used by this job to specified account. The account is an arbitrary string. The account name may be changed after job submission using the scontrol command.

--acctg-freq=<datatype>=<interval>[,<datatype>=<interval>...]
Define the job accounting and profiling sampling intervals in seconds. This can be used to override the JobAcctGatherFrequency parameter in the slurm.conf file. <datatype>=<interval> specifies the task sampling interval for the jobacct_gather plugin or a sampling interval for a profiling type by the acct_gather_profile plugin. Multiple comma-separated <datatype>=<interval> pairs may be specified. Supported datatype values are:
task
Sampling interval for the jobacct_gather plugins and for task profiling by the acct_gather_profile plugin.
NOTE: This frequency is used to monitor memory usage. If memory limits are enforced the highest frequency a user can request is what is configured in the slurm.conf file. It can not be disabled.

energy
Sampling interval for energy profiling using the acct_gather_energy plugin.

network
Sampling interval for infiniband profiling using the acct_gather_interconnect plugin.

filesystem
Sampling interval for filesystem profiling using the acct_gather_filesystem plugin.

The default value for the task sampling interval is 30 seconds. The default value for all other intervals is 0. An interval of 0 disables sampling of the specified type. If the task sampling interval is 0, accounting information is collected only at job termination (reducing Slurm interference with the job).
Smaller (non-zero) values have a greater impact upon job performance, but a value of 30 seconds is not likely to be noticeable for applications having less than 10,000 tasks.

--bb=<spec>
Burst buffer specification. The form of the specification is system dependent. Note the burst buffer may not be accessible from a login node, but require that salloc spawn a shell on one of its allocated compute nodes. When the --bb option is used, Slurm parses this option and creates a temporary burst buffer script file that is used internally by the burst buffer plugins. See Slurm's burst buffer guide for more information and examples:
https://slurm.schedmd.com/burst_buffer.html

--bbf=<file_name>
Path of file containing burst buffer specification. The form of the specification is system dependent. Also see --bb. Note the burst buffer may not be accessible from a login node, but require that salloc spawn a shell on one of its allocated compute nodes. See Slurm's burst buffer guide for more information and examples:
https://slurm.schedmd.com/burst_buffer.html

--begin=<time>
Defer eligibility of this job allocation until the specified time.

Time may be of the form HH:MM:SS to run a job at a specific time of day (seconds are optional). (If that time is already past, the next day is assumed.) You may also specify midnight, noon, elevenses (11 AM), fika (3 PM) or teatime (4 PM) and you can have a time-of-day suffixed with AM or PM for running in the morning or the evening. You can also say what day the job will be run, by specifying a date of the form MMDDYY or MM/DD/YY YYYY-MM-DD. Combine date and time using the following format YYYY-MM-DD[THH:MM[:SS]]. You can also give times like now + count time-units, where the time-units can be seconds (default), minutes, hours, days, or weeks and you can tell Slurm to run the job today with the keyword today and to run the job tomorrow with the keyword tomorrow. The value may be changed after job submission using the scontrol command. For example:

   --begin=16:00
   --begin=now+1hour
   --begin=now+60           (seconds by default)
   --begin=2010-01-20T12:34:00

Notes on date/time specifications:
 - Although the 'seconds' field of the HH:MM:SS time specification is allowed by the code, note that the poll time of the Slurm scheduler is not precise enough to guarantee dispatch of the job on the exact second. The job will be eligible to start on the next poll following the specified time. The exact poll interval depends on the Slurm scheduler (e.g., 60 seconds with the default sched/builtin).
 - If no time (HH:MM:SS) is specified, the default is (00:00:00).
 - If a date is specified without a year (e.g., MM/DD) then the current year is assumed, unless the combination of MM/DD and HH:MM:SS has already passed for that year, in which case the next year is used.

--bell
Force salloc to ring the terminal bell when the job allocation is granted (and only if stdout is a tty). By default, salloc only rings the bell if the allocation is pending for more than ten seconds (and only if stdout is a tty). Also see the option --no-bell.

-D, --chdir=<path>
Change directory to path before beginning execution. The path can be specified as full path or relative path to the directory where the command is executed.

--cluster-constraint=<list>
Specifies features that a federated cluster must have to have a sibling job submitted to it. Slurm will attempt to submit a sibling job to a cluster if it has at least one of the specified features.

-M, --clusters=<string>
Clusters to issue commands to. Multiple cluster names may be comma separated. The job will be submitted to the one cluster providing the earliest expected job initiation time. The default value is the current cluster. A value of 'all' will query to run on all clusters. Note that the slurmdbd must be up for this option to work properly, unless running in a federation with FederationParameters=fed_display configured.

--comment=<string>
An arbitrary comment.

-C, --constraint=<list>
Nodes can have features assigned to them by the Slurm administrator. Users can specify which of these features are required by their job using the constraint option. If you are looking for 'soft' constraints please see --prefer for more information. Only nodes having features matching the job constraints will be used to satisfy the request. Multiple constraints may be specified with AND, OR, matching OR, resource counts, etc. (some operators are not supported on all system types).

NOTE: Changeable features are features defined by a NodeFeatures plugin.

Supported --constraint options include:

Single Name
Only nodes which have the specified feature will be used. For example, --constraint="intel"

Node Count
A request can specify the number of nodes needed with some feature by appending an asterisk and count after the feature name. For example, --nodes=16 --constraint="graphics*4" indicates that the job requires 16 nodes and that at least four of those nodes must have the feature "graphics." If requesting more than one feature and using node counts, the request must have square brackets surrounding it.

NOTE: This option is not supported by the helpers NodeFeatures plugin. Heterogeneous jobs can be used instead.

AND
Only nodes with all of specified features will be used. The ampersand is used for an AND operator. For example, --constraint="intel&gpu"

OR
Only nodes with at least one of specified features will be used. The vertical bar is used for an OR operator. If changeable features are not requested, nodes in the allocation can have different features. For example, salloc -N2 --constraint="intel|amd" can result in a job allocation where one node has the intel feature and the other node has the amd feature. However, if the expression contains a changeable feature, then all OR operators are automatically treated as Matching OR so that all nodes in the job allocation have the same set of features. For example, salloc -N2 --constraint="foo|bar&baz" The job is allocated two nodes where both nodes have foo, or bar and baz (one or both nodes could have foo, bar, and baz). The helpers NodeFeatures plugin will find the first set of node features that matches all nodes in the job allocation; these features are set as active features on the node and passed to RebootProgram (see slurm.conf(5)) and the helper script (see helpers.conf(5)). In this case, the helpers plugin uses the first of "foo" or "bar,baz" that match the two nodes in the job allocation.

Matching OR
If only one of a set of possible options should be used for all allocated nodes, then use the OR operator and enclose the options within square brackets. For example, --constraint="[rack1|rack2|rack3|rack4]" might be used to specify that all nodes must be allocated on a single rack of the cluster, but any of those four racks can be used.

Multiple Counts
Specific counts of multiple resources may be specified by using the AND operator and enclosing the options within square brackets. For example, --constraint="[rack1*2&rack2*4]" might be used to specify that two nodes must be allocated from nodes with the feature of "rack1" and four nodes must be allocated from nodes with the feature "rack2".

NOTE: This construct does not support multiple Intel KNL NUMA or MCDRAM modes. For example, while --constraint="[(knl&quad)*2&(knl&hemi)*4]" is not supported, --constraint="[haswell*2&(knl&hemi)*4]" is supported. Specification of multiple KNL modes requires the use of a heterogeneous job.

NOTE: This option is not supported by the helpers NodeFeatures plugin.

NOTE: Multiple Counts can cause jobs to be allocated with a non-optimal network layout.

Brackets
Brackets can be used to indicate that you are looking for a set of nodes with the different requirements contained within the brackets. For example, --constraint="[(rack1|rack2)*1&(rack3)*2]" will get you one node with either the "rack1" or "rack2" features and two nodes with the "rack3" feature. If requesting more than one feature and using node counts, the request must have square brackets surrounding it.

NOTE: Brackets are only reserved for Multiple Counts and Matching OR syntax. AND operators require a count for each feature inside square brackets (i.e. "[quad*2&hemi*1]"). Slurm will only allow a single set of bracketed constraints per job.

NOTE: Square brackets are not supported by the helpers NodeFeatures plugin. Matching OR can be requested without square brackets by using the vertical bar character with at least one changeable feature.

Parentheses
Parentheses can be used to group like node features together. For example, --constraint="[(knl&snc4&flat)*4&haswell*1]" might be used to specify that four nodes with the features "knl", "snc4" and "flat" plus one node with the feature "haswell" are required. Parentheses can also be used to group operations. Without parentheses, node features are parsed strictly from left to right. For example, --constraint="foo&bar|baz" requests nodes with foo and bar, or baz. --constraint="foo|bar&baz" requests nodes with foo and baz, or bar and baz (note how baz was AND'd with everything). --constraint="foo&(bar|baz)" requests nodes with foo and at least one of bar or baz. NOTE: OR within parentheses should not be used with a KNL NodeFeatures plugin but is supported by the helpers NodeFeatures plugin.

--container=<path_to_container>
Absolute path to OCI container bundle.

--container-id=<container_id>
Unique name for OCI container.

--contiguous
If set, then the allocated nodes must form a contiguous set.

NOTE: If the SelectType is cons_tres this option won't be honored with the topology/tree or topology/3d_torus plugins, both of which can modify the node ordering.

-S, --core-spec=<num>
Count of Specialized Cores per node reserved by the job for system operations and not used by the application. If AllowSpecResourcesUsage is enabled a job can override the CoreSpecCount of all its allocated nodes with this option. The overridden Specialized Cores will still be reserved for system processes. The job will get an implicit --exclusive allocation for the rest of the Cores on the nodes, resulting in the job's processes being able to use (and being charged for) all the Cores on the nodes except for the overridden Specialized Cores. This option can not be used with the --thread-spec option.

NOTE: Explicitly setting a job's specialized core value implicitly sets the --exclusive option.

--cores-per-socket=<cores>
Restrict node selection to nodes with at least the specified number of cores per socket. See additional information under -B option above when task/affinity plugin is enabled.
NOTE: This option may implicitly set the number of tasks (if -n was not specified) as one task per requested thread.

--cpu-freq=<p1>[-p2][:p3]

Request that job steps initiated by srun commands inside this allocation be run at some requested frequency if possible, on the CPUs selected for the step on the compute node(s).

p1 can be [#### | low | medium | high | highm1] which will set the frequency scaling_speed to the corresponding value, and set the frequency scaling_governor to UserSpace. See below for definition of the values.

p1 can be [Conservative | OnDemand | Performance | PowerSave] which will set the scaling_governor to the corresponding value. The governor has to be in the list set by the slurm.conf option CpuFreqGovernors.

When p2 is present, p1 will be the minimum scaling frequency and p2 will be the maximum scaling frequency. In that case the governor p3 or CpuFreqDef cannot be UserSpace since it doesn't support a range.

p2 can be [#### | medium | high | highm1]. p2 must be greater than p1 and is incompatible with UserSpace governor.

p3 can be [Conservative | OnDemand | Performance | PowerSave | SchedUtil | UserSpace] which will set the governor to the corresponding value.

If p3 is UserSpace, the frequency scaling_speed, scaling_max_freq and scaling_min_freq will be statically set to the value defined by p1.

Any requested frequency below the minimum available frequency will be rounded to the minimum available frequency. In the same way, any requested frequency above the maximum available frequency will be rounded to the maximum available frequency.

The CpuFreqDef parameter in slurm.conf will be used to set the governor in absence of p3. If there's no CpuFreqDef, the default governor will be to use the system current governor set in each cpu. Specifying a range without CpuFreqDef or a specific governor is therefore not allowed.

Acceptable values at present include:

####
frequency in kilohertz

Low
the lowest available frequency

High
the highest available frequency

HighM1
(high minus one) will select the next highest available frequency

Medium
attempts to set a frequency in the middle of the available range

Conservative
attempts to use the Conservative CPU governor

OnDemand
attempts to use the OnDemand CPU governor (the default value)

Performance
attempts to use the Performance CPU governor

PowerSave
attempts to use the PowerSave CPU governor

UserSpace
attempts to use the UserSpace CPU governor

The following informational environment variable is set in the job step when --cpu-freq option is requested.

        SLURM_CPU_FREQ_REQ

This environment variable can also be used to supply the value for the CPU frequency request if it is set when the 'srun' command is issued. The --cpu-freq on the command line will override the environment variable value. The form on the environment variable is the same as the command line. See the ENVIRONMENT VARIABLES section for a description of the SLURM_CPU_FREQ_REQ variable.

NOTE: This parameter is treated as a request, not a requirement. If the job step's node does not support setting the CPU frequency, or the requested value is outside the bounds of the legal frequencies, an error is logged, but the job step is allowed to continue.

NOTE: Setting the frequency for just the CPUs of the job step implies that the tasks are confined to those CPUs. If task confinement (i.e. the task/affinity TaskPlugin is enabled, or the task/cgroup TaskPlugin is enabled with "ConstrainCores=yes" set in cgroup.conf) is not configured, this parameter is ignored.

NOTE: When the step completes, the frequency and governor of each selected CPU is reset to the previous values.

NOTE: When submitting jobs with the --cpu-freq option with linuxproc as the ProctrackType can cause jobs to run too quickly before Accounting is able to poll for job information. As a result not all of accounting information will be present.

--cpus-per-gpu=<ncpus>
Request that ncpus processors be allocated per allocated GPU. Steps inheriting this value will imply --exact. Not compatible with the --cpus-per-task option.

-c, --cpus-per-task=<ncpus>
Advise Slurm that ensuing job steps will require ncpus processors per task. By default Slurm will allocate one processor per task.

For instance, consider an application that has 4 tasks, each requiring 3 processors. If our cluster is comprised of quad-processors nodes and we simply ask for 12 processors, the controller might give us only 3 nodes. However, by using the --cpus-per-task=3 options, the controller knows that each task requires 3 processors on the same node, and the controller will grant an allocation of 4 nodes, one for each of the 4 tasks.

--deadline=<OPT>
Remove the job if no ending is possible before this deadline (start > (deadline - time[-min])). Default is no deadline. Note that if neither DefaultTime nor MaxTime are configured on the partition the job is in, the job will need to specify some form of time limit (--time[-min]) if a deadline is to be used.

Valid time formats are:
HH:MM[:SS] [AM|PM]
MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]
MM/DD[/YY]-HH:MM[:SS]
YYYY-MM-DD[THH:MM[:SS]]]
now[+count[seconds(default)|minutes|hours|days|weeks]]

--delay-boot=<minutes>
Do not reboot nodes in order to satisfied this job's feature specification if the job has been eligible to run for less than this time period. If the job has waited for less than the specified period, it will use only nodes which already have the specified features. The argument is in units of minutes. A default value may be set by a system administrator using the delay_boot option of the SchedulerParameters configuration parameter in the slurm.conf file, otherwise the default value is zero (no delay).

-d, --dependency=<dependency_list>
Defer the start of this job until the specified dependencies have been satisfied. <dependency_list> is of the form <type:job_id[:job_id][,type:job_id[:job_id]]> or <type:job_id[:job_id][?type:job_id[:job_id]]>. All dependencies must be satisfied if the "," separator is used. Any dependency may be satisfied if the "?" separator is used. Only one separator may be used. For instance:
-d afterok:20:21,afterany:23
means that the job can run only after a 0 return code of jobs 20 and 21 AND completion of job 23. However:
-d afterok:20:21?afterany:23
means that any of the conditions (afterok:20 OR afterok:21 OR afterany:23) will be enough to release the job. Many jobs can share the same dependency and these jobs may even belong to different users. The value may be changed after job submission using the scontrol command. Dependencies on remote jobs are allowed in a federation. Once a job dependency fails due to the termination state of a preceding job, the dependent job will never be run, even if the preceding job is requeued and has a different termination state in a subsequent execution.
after:job_id[[+time][:jobid[+time]...]]
After the specified jobs start or are cancelled and 'time' in minutes from job start or cancellation happens, this job can begin execution. If no 'time' is given then there is no delay after start or cancellation.

afterany:job_id[:jobid...]
This job can begin execution after the specified jobs have terminated. This is the default dependency type.

afterburstbuffer:job_id[:jobid...]
This job can begin execution after the specified jobs have terminated and any associated burst buffer stage out operations have completed.

aftercorr:job_id[:jobid...]
A task of this job array can begin execution after the corresponding task ID in the specified job has completed successfully (ran to completion with an exit code of zero).

afternotok:job_id[:jobid...]
This job can begin execution after the specified jobs have terminated in some failed state (non-zero exit code, node failure, timed out, etc). This job must be submitted while the specified job is still active or within MinJobAge seconds after the specified job has ended.

afterok:job_id[:jobid...]
This job can begin execution after the specified jobs have successfully executed (ran to completion with an exit code of zero). This job must be submitted while the specified job is still active or within MinJobAge seconds after the specified job has ended.

singleton
This job can begin execution after any previously launched jobs sharing the same job name and user have terminated. In other words, only one job by that name and owned by that user can be running or suspended at any point in time. In a federation, a singleton dependency must be fulfilled on all clusters unless DependencyParameters=disable_remote_singleton is used in slurm.conf.

-m, --distribution={*|block|cyclic|arbitrary|plane=<size>}[:{*|block|cyclic|fcyclic}[:{*|block|cyclic|fcyclic}]][,{Pack|NoPack}]

Specify alternate distribution methods for remote processes. For job allocation, this sets environment variables that will be used by subsequent srun requests and also affects which cores will be selected for job allocation.

This option controls the distribution of tasks to the nodes on which resources have been allocated, and the distribution of those resources to tasks for binding (task affinity). The first distribution method (before the first ":") controls the distribution of tasks to nodes. The second distribution method (after the first ":") controls the distribution of allocated CPUs across sockets for binding to tasks. The third distribution method (after the second ":") controls the distribution of allocated CPUs across cores for binding to tasks. The second and third distributions apply only if task affinity is enabled. The third distribution is supported only if the task/cgroup plugin is configured. The default value for each distribution type is specified by *.

Note that with select/cons_tres, the number of CPUs allocated to each socket and node may be different. Refer to the mc_support document for more information on resource allocation, distribution of tasks to nodes, and binding of tasks to CPUs.

First distribution method (distribution of tasks across nodes):

*
Use the default method for distributing tasks to nodes (block).

block
The block distribution method will distribute tasks to a node such that consecutive tasks share a node. For example, consider an allocation of three nodes each with two cpus. A four-task block distribution request will distribute those tasks to the nodes with tasks one and two on the first node, task three on the second node, and task four on the third node. Block distribution is the default behavior if the number of tasks exceeds the number of allocated nodes.

cyclic
The cyclic distribution method will distribute tasks to a node such that consecutive tasks are distributed over consecutive nodes (in a round-robin fashion). For example, consider an allocation of three nodes each with two cpus. A four-task cyclic distribution request will distribute those tasks to the nodes with tasks one and four on the first node, task two on the second node, and task three on the third node. Note that when SelectType is select/cons_tres, the same number of CPUs may not be allocated on each node. Task distribution will be round-robin among all the nodes with CPUs yet to be assigned to tasks. Cyclic distribution is the default behavior if the number of tasks is no larger than the number of allocated nodes.

plane
The tasks are distributed in blocks of size <size>. The size must be given or SLURM_DIST_PLANESIZE must be set. The number of tasks distributed to each node is the same as for cyclic distribution, but the taskids assigned to each node depend on the plane size. Additional distribution specifications cannot be combined with this option. For more details (including examples and diagrams), please see the mc_support document and https://slurm.schedmd.com/dist_plane.html

arbitrary
The arbitrary method of distribution will allocate processes in-order as listed in file designated by the environment variable SLURM_HOSTFILE. If this variable is listed it will override any other method specified. If not set the method will default to block. Inside the hostfile must contain at minimum the number of hosts requested and be one per line or comma separated. If specifying a task count (-n, --ntasks=<number>), your tasks will be laid out on the nodes in the order of the file.
NOTE: The arbitrary distribution option on a job allocation only controls the nodes to be allocated to the job and not the allocation of CPUs on those nodes. This option is meant primarily to control a job step's task layout in an existing job allocation for the srun command.
NOTE: If the number of tasks is given and a list of requested nodes is also given, the number of nodes used from that list will be reduced to match that of the number of tasks if the number of nodes in the list is greater than the number of tasks.

Second distribution method (distribution of CPUs across sockets for binding):

*
Use the default method for distributing CPUs across sockets (cyclic).

block
The block distribution method will distribute allocated CPUs consecutively from the same socket for binding to tasks, before using the next consecutive socket.

cyclic
The cyclic distribution method will distribute allocated CPUs for binding to a given task consecutively from the same socket, and from the next consecutive socket for the next task, in a round-robin fashion across sockets. Tasks requiring more than one CPU will have all of those CPUs allocated on a single socket if possible.
NOTE: In nodes with hyper-threading enabled, a task not requesting full cores may be distributed across sockets. This can be avoided by specifying --ntasks-per-core=1, which forces tasks to allocate full cores.

fcyclic
The fcyclic distribution method will distribute allocated CPUs for binding to tasks from consecutive sockets in a round-robin fashion across the sockets. Tasks requiring more than one CPU will have each CPUs allocated in a cyclic fashion across sockets.

Third distribution method (distribution of CPUs across cores for binding):

*
Use the default method for distributing CPUs across cores (inherited from second distribution method).

block
The block distribution method will distribute allocated CPUs consecutively from the same core for binding to tasks, before using the next consecutive core.

cyclic
The cyclic distribution method will distribute allocated CPUs for binding to a given task consecutively from the same core, and from the next consecutive core for the next task, in a round-robin fashion across cores.

fcyclic
The fcyclic distribution method will distribute allocated CPUs for binding to tasks from consecutive cores in a round-robin fashion across the cores.

Optional control for task distribution over nodes:

Pack
Rather than evenly distributing a job step's tasks evenly across its allocated nodes, pack them as tightly as possible on the nodes. This only applies when the "block" task distribution method is used.

NoPack
Rather than packing a job step's tasks as tightly as possible on the nodes, distribute them evenly. This user option will supersede the SelectTypeParameters CR_Pack_Nodes configuration parameter.

-x, --exclude=<node_name_list>
Explicitly exclude certain nodes from the resources granted to the job.

--exclusive[={user|mcs|topo}]
The job allocation can not share nodes (or topology segment with the "=topo") with other running jobs (or just other users with the "=user" option or with the "=mcs" option). If user/mcsi/topo are not specified (i.e. the job allocation can not share nodes with other running jobs), the job is allocated all CPUs and GRES on all nodes in the allocation, but is only allocated as much memory as it requested. This is by design to support gang scheduling, because suspended jobs still reside in memory. To request all the memory on a node, use --mem=0. The default shared/exclusive behavior depends on system configuration and the partition's OverSubscribe option takes precedence over the job's option. NOTE: Since shared GRES (MPS) cannot be allocated at the same time as a sharing GRES (GPU) this option only allocates all sharing GRES and no underlying shared GRES.

NOTE: This option is mutually exclusive with --oversubscribe.

--extra=<string>
An arbitrary string enclosed in single or double quotes if using spaces or some special characters.

If SchedulerParameters=extra_constraints is enabled, this string is used for node filtering based on the Extra field in each node.

-B, --extra-node-info=<sockets>[:cores[:threads]]
Restrict node selection to nodes with at least the specified number of sockets, cores per socket and/or threads per core.
NOTE: These options do not specify the resource allocation size. Each value specified is considered a minimum. An asterisk (*) can be used as a placeholder indicating that all available resources of that type are to be utilized. Values can also be specified as min-max. The individual levels can also be specified in separate options if desired:
    --sockets-per-node=<sockets>
    --cores-per-socket=<cores>
    --threads-per-core=<threads>
If task/affinity plugin is enabled, then specifying an allocation in this manner also results in subsequently launched tasks being bound to threads if the -B option specifies a thread count, otherwise an option of cores if a core count is specified, otherwise an option of sockets. If SelectType is configured to select/cons_tres, it must have a parameter of CR_Core, CR_Core_Memory, CR_Socket, or CR_Socket_Memory for this option to be honored. If not specified, the scontrol show job will display 'ReqS:C:T=*:*:*'. This option applies to job allocations.
NOTE: This option is mutually exclusive with --hint, --threads-per-core and --ntasks-per-core.
NOTE: This option may implicitly set the number of tasks (if -n was not specified) as one task per requested thread.

--get-user-env[=timeout][mode]
This option will load login environment variables for the user specified in the --uid option. The environment variables are retrieved by running something along the lines of "su - <username> -c /usr/bin/env" and parsing the output. Be aware that any environment variables already set in salloc's environment will take precedence over any environment variables in the user's login environment. The optional timeout value is in seconds. Default value is 3 seconds. The optional mode value controls the "su" options. With a mode value of "S", "su" is executed without the "-" option. With a mode value of "L", "su" is executed with the "-" option, replicating the login environment. If mode is not specified, the mode established at Slurm build time is used. Examples of use include "--get-user-env", "--get-user-env=10" "--get-user-env=10L", and "--get-user-env=S". NOTE: This option only works if the caller has an effective uid of "root".

--gid=<group>
Submit the job with the specified group's group access permissions. group may be the group name or the numerical group ID. In the default Slurm configuration, this option is only valid when used by the user root.

--gpu-bind=[verbose,]<type>
Equivalent to --tres-bind=gres/gpu:[verbose,]<type> See --tres-bind for all options and documentation.

--gpu-freq=[<type]=value>[,<type=value>][,verbose]
Request that GPUs allocated to the job are configured with specific frequency values. This option can be used to independently configure the GPU and its memory frequencies. After the job is completed, the frequencies of all affected GPUs will be reset to the highest possible values. In some cases, system power caps may override the requested values. The field type can be "memory". If type is not specified, the GPU frequency is implied. The value field can either be "low", "medium", "high", "highm1" or a numeric value in megahertz (MHz). If the specified numeric value is not possible, a value as close as possible will be used. See below for definition of the values. The verbose option causes current GPU frequency information to be logged. Examples of use include "--gpu-freq=medium,memory=high" and "--gpu-freq=450".

Supported value definitions:

low
the lowest available frequency.

medium
attempts to set a frequency in the middle of the available range.

high
the highest available frequency.

highm1
(high minus one) will select the next highest available frequency.

-G, --gpus=[type:]<number>
Specify the total number of GPUs required for the job. An optional GPU type specification can be supplied. For example "--gpus=volta:3". See also the --gpus-per-node, --gpus-per-socket and --gpus-per-task options.
NOTE: The allocation has to contain at least one GPU per node, or one of each GPU type per node if types are used. Use heterogeneous jobs if different nodes need different GPU types.

--gpus-per-node=[type:]<number>
Specify the number of GPUs required for the job on each node included in the job's resource allocation. An optional GPU type specification can be supplied. For example "--gpus-per-node=volta:3". Multiple options can be requested in a comma separated list, for example: "--gpus-per-node=volta:3,kepler:1". See also the --gpus, --gpus-per-socket and --gpus-per-task options.

--gpus-per-socket=[type:]<number>
Specify the number of GPUs required for the job on each socket included in the job's resource allocation. An optional GPU type specification can be supplied. For example "--gpus-per-socket=volta:3". Multiple options can be requested in a comma separated list, for example: "--gpus-per-socket=volta:3,kepler:1". Requires job to specify a sockets per node count ( --sockets-per-node). See also the --gpus, --gpus-per-node and --gpus-per-task options.

--gpus-per-task=[type:]<number>
Specify the number of GPUs required for the job on each task to be spawned in the job's resource allocation. An optional GPU type specification can be supplied. For example "--gpus-per-task=volta:1". Multiple options can be requested in a comma separated list, for example: "--gpus-per-task=volta:3,kepler:1". See also the --gpus, --gpus-per-socket and --gpus-per-node options. This option requires an explicit task count, e.g. -n, --ntasks or "--gpus=X --gpus-per-task=Y" rather than an ambiguous range of nodes with -N, --nodes. This option will implicitly set --tres-bind=gres/gpu:per_task:<gpus_per_task>, but that can be overridden with an explicit --tres-bind=gres/gpu specification.

--gres=<list>
Specifies a comma-delimited list of generic consumable resources. The format for each entry in the list is "name[[:type]:count]". The name is the type of consumable resource (e.g. gpu). The type is an optional classification for the resource (e.g. a100). The count is the number of those resources with a default value of 1. The count can have a suffix of "k" or "K" (multiple of 1024), "m" or "M" (multiple of 1024 x 1024), "g" or "G" (multiple of 1024 x 1024 x 1024), "t" or "T" (multiple of 1024 x 1024 x 1024 x 1024), "p" or "P" (multiple of 1024 x 1024 x 1024 x 1024 x 1024). The specified resources will be allocated to the job on each node. The available generic consumable resources is configurable by the system administrator. A list of available generic consumable resources will be printed and the command will exit if the option argument is "help". Examples of use include "--gres=gpu:2", "--gres=gpu:kepler:2", and "--gres=help".

--gres-flags=<type>
Specify generic resource task binding options.

multiple-tasks-per-sharing
Negate one-task-per-sharing. This is useful if it is set by default in SelectTypeParameters.

disable-binding
Negate enforce-binding. This is useful if it is set by default in SelectTypeParameters.

enforce-binding
The only CPUs available to the job will be those bound to the selected GRES (i.e. the CPUs identified in the gres.conf file will be strictly enforced). This option may result in delayed initiation of a job. For example a job requiring two GPUs and one CPU will be delayed until both GPUs on a single socket are available rather than using GPUs bound to separate sockets, however, the application performance may be improved due to improved communication speed. Requires the node to be configured with more than one socket and resource filtering will be performed on a per-socket basis.
NOTE: This option can be set by default in SelectTypeParameters.
NOTE: This option is specific to SelectType=cons_tres.

one-task-per-sharing
Do not allow different tasks in to be allocated shared gres from the same sharing gres.
NOTE: This flag is only enforced if shared gres are requested with --tres-per-task.
NOTE: This option can be set by default with SelectTypeParameters=ONE_TASK_PER_SHARING_GRES.
NOTE: This option is specific to SelectTypeParameters=MULTIPLE_SHARING_GRES_PJ

-h, --help
Display help information and exit.

--hint=<type>
Bind tasks according to application hints.
NOTE: This option implies specific values for certain related options, which prevents its use with any user-specified values for --ntasks-per-core, --threads-per-core or -B. These conflicting options will override --hint when specified as command line arguments. If a conflicting option is specified as an environment variable, --hint as a command line argument will take precedence.
compute_bound
Select settings for compute bound applications: use all cores in each socket, one thread per core.

memory_bound
Select settings for memory bound applications: use only one core in each socket, one thread per core.

multithread
Use extra threads with in-core multi-threading which can benefit communication intensive applications. Only supported with the task/affinity plugin.

nomultithread
Don't use extra threads with in-core multi-threading; restricts tasks to one thread per core. Only supported with the task/affinity plugin.

help
show this help message

-H, --hold
Specify the job is to be submitted in a held state (priority of zero). A held job can now be released using scontrol to reset its priority (e.g. "scontrol release <job_id>").

-I, --immediate[=<seconds>]
exit if resources are not available within the time period specified. If no argument is given (seconds defaults to 1), resources must be available immediately for the request to succeed. If defer is configured in SchedulerParameters and seconds=1 the allocation request will fail immediately; defer conflicts and takes precedence over this option. By default, --immediate is off, and the command will block until resources become available. Since this option's argument is optional, for proper parsing the single letter option must be followed immediately with the value and not include a space between them. For example "-I60" and not "-I 60".

-J, --job-name=<jobname>
Specify a name for the job allocation. The specified name will appear along with the job id number when querying running jobs on the system. The default job name is the name of the "command" specified on the command line.

-K, --kill-command[=signal]
salloc always runs a user-specified command once the allocation is granted. salloc will wait indefinitely for that command to exit. If you specify the --kill-command option salloc will send a signal to your command any time that the Slurm controller tells salloc that its job allocation has been revoked. The job allocation can be revoked for a couple of reasons: someone used scancel to revoke the allocation, or the allocation reached its time limit. If you do not specify a signal name or number and Slurm is configured to signal the spawned command at job termination, the default signal is SIGHUP for interactive and SIGTERM for non-interactive sessions. Since this option's argument is optional, for proper parsing the single letter option must be followed immediately with the value and not include a space between them. For example "-K1" and not "-K 1".

-L, --licenses=<license>[@db][:count][,license[@db][:count]...]
Specification of licenses (or other resources available on all nodes of the cluster) which must be allocated to this job. License names can be followed by a colon and count (the default count is one). Multiple license names should be comma separated (e.g. "--licenses=foo:4,bar").

NOTE: When submitting heterogeneous jobs, license requests may only be made on the first component job. For example "salloc -L ansys:2 :".

--mail-type=<type>
Notify user by email when certain event types occur. Valid type values are NONE, BEGIN, END, FAIL, REQUEUE, ALL (equivalent to BEGIN, END, FAIL, INVALID_DEPEND, REQUEUE, and STAGE_OUT), INVALID_DEPEND (dependency never satisfied), STAGE_OUT (burst buffer stage out and teardown completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90 percent of time limit), TIME_LIMIT_80 (reached 80 percent of time limit), and TIME_LIMIT_50 (reached 50 percent of time limit). Multiple type values may be specified in a comma separated list. NONE will suppress all event notifications, ignoring any other values specified. By default no email notifications are sent. The user to be notified is indicated with --mail-user.

--mail-user=<user>
User to receive email notification of state changes as defined by --mail-type. This may be a full email address or a username. If a username is specified, the value from MailDomain in slurm.conf will be appended to create an email address. The default value is the submitting user.

--mcs-label=<mcs>
Used only when the mcs/group plugin is enabled. This parameter is a group among the groups of the user. Default value is calculated by the Plugin mcs if it's enabled.

--mem=<size>[units]
Specify the real memory required per node. Default units are megabytes. Different units can be specified using the suffix [K|M|G|T]. Default value is DefMemPerNode and the maximum value is MaxMemPerNode. If configured, both of parameters can be seen using the scontrol show config command. This parameter would generally be used if whole nodes are allocated to jobs (SelectType=select/linear). Also see --mem-per-cpu and --mem-per-gpu. The --mem, --mem-per-cpu and --mem-per-gpu options are mutually exclusive. If --mem, --mem-per-cpu or --mem-per-gpu are specified as command line arguments, then they will take precedence over the environment.

NOTE: A memory size specification of zero is treated as a special case and grants the job access to all of the memory on each node.

NOTE: Memory requests will not be strictly enforced unless Slurm is configured to use an enforcement mechanism. See ConstrainRAMSpace in the cgroup.conf(5) man page and OverMemoryKill in the slurm.conf(5) man page for more details.

--mem-bind=[{quiet|verbose},]<type>
Bind tasks to memory. Used only when the task/affinity plugin is enabled and the NUMA memory functions are available. Note that the resolution of CPU and memory binding may differ on some architectures. For example, CPU binding may be performed at the level of the cores within a processor while memory binding will be performed at the level of nodes, where the definition of "nodes" may differ from system to system. By default no memory binding is performed; any task using any CPU can use any memory. This option is typically used to ensure that each task is bound to the memory closest to its assigned CPU. The use of any type other than "none" or "local" is not recommended.

NOTE: To have Slurm always report on the selected memory binding for all commands executed in a shell, you can enable verbose mode by setting the SLURM_MEM_BIND environment variable value to "verbose".

The following informational environment variables are set when --mem-bind is in use:

        SLURM_MEM_BIND_LIST
        SLURM_MEM_BIND_PREFER
        SLURM_MEM_BIND_SORT
        SLURM_MEM_BIND_TYPE
        SLURM_MEM_BIND_VERBOSE

See the ENVIRONMENT VARIABLES section for a more detailed description of the individual SLURM_MEM_BIND* variables.

Supported options include:

help
show this help message

local
Use memory local to the processor in use

map_mem:<list>
Bind by setting memory masks on tasks (or ranks) as specified where <list> is <numa_id_for_task_0>,<numa_id_for_task_1>,... The mapping is specified for a node and identical mapping is applied to the tasks on every node (i.e. the lowest task ID on each node is mapped to the first ID specified in the list, etc.). NUMA IDs are interpreted as decimal values unless they are preceded with '0x' in which case they interpreted as hexadecimal values. If the number of tasks (or ranks) exceeds the number of elements in this list, elements in the list will be reused as needed starting from the beginning of the list. To simplify support for large task counts, the lists may follow a map with an asterisk and repetition count. For example "map_mem:0x0f*4,0xf0*4". For predictable binding results, all CPUs for each node in the job should be allocated to the job.

mask_mem:<list>
Bind by setting memory masks on tasks (or ranks) as specified where <list> is <numa_mask_for_task_0>,<numa_mask_for_task_1>,... The mapping is specified for a node and identical mapping is applied to the tasks on every node (i.e. the lowest task ID on each node is mapped to the first mask specified in the list, etc.). NUMA masks are always interpreted as hexadecimal values. Note that masks must be preceded with a '0x' if they don't begin with [0-9] so they are seen as numerical values. If the number of tasks (or ranks) exceeds the number of elements in this list, elements in the list will be reused as needed starting from the beginning of the list. To simplify support for large task counts, the lists may follow a mask with an asterisk and repetition count. For example "mask_mem:0*4,1*4". For predictable binding results, all CPUs for each node in the job should be allocated to the job.

no[ne]
don't bind tasks to memory (default)

p[refer]
Prefer use of first specified NUMA node, but permit
 use of other available NUMA nodes.

q[uiet]
quietly bind before task runs (default)

rank
bind by task rank (not recommended)

sort
sort free cache pages (run zonesort on Intel KNL nodes)

v[erbose]
verbosely report binding before task runs

--mem-per-cpu=<size>[units]
Minimum memory required per usable allocated CPU. Default units are megabytes. Different units can be specified using the suffix [K|M|G|T]. The default value is DefMemPerCPU and the maximum value is MaxMemPerCPU (see exception below). If configured, both parameters can be seen using the scontrol show config command. Note that if the job's --mem-per-cpu value exceeds the configured MaxMemPerCPU, then the user's limit will be treated as a memory limit per task; --mem-per-cpu will be reduced to a value no larger than MaxMemPerCPU; --cpus-per-task will be set and the value of --cpus-per-task multiplied by the new --mem-per-cpu value will equal the original --mem-per-cpu value specified by the user. This parameter would generally be used if individual processors are allocated to jobs (SelectType=select/cons_tres). If resources are allocated by core, socket, or whole nodes, then the number of CPUs allocated to a job may be higher than the task count and the value of --mem-per-cpu should be adjusted accordingly. Also see --mem and --mem-per-gpu. The --mem, --mem-per-cpu and --mem-per-gpu options are mutually exclusive.

NOTE: If the final amount of memory requested by a job can't be satisfied by any of the nodes configured in the partition, the job will be rejected. This could happen if --mem-per-cpu is used with the --exclusive option for a job allocation and --mem-per-cpu times the number of CPUs on a node is greater than the total memory of that node.

NOTE: This applies to usable allocated CPUs in a job allocation. This is important when more than one thread per core is configured. If a job requests --threads-per-core with fewer threads on a core than exist on the core (or --hint=nomultithread which implies --threads-per-core=1), the job will be unable to use those extra threads on the core and those threads will not be included in the memory per CPU calculation. But if the job has access to all threads on the core, those threads will be included in the memory per CPU calculation even if the job did not explicitly request those threads.

In the following examples, each core has two threads.

In this first example, two tasks can run on separate hyperthreads in the same core because --threads-per-core is not used. The third task uses both threads of the second core. The allocated memory per cpu includes all threads:

$ salloc -n3 --mem-per-cpu=100
salloc: Granted job allocation 17199
$ sacct -j $SLURM_JOB_ID -X -o jobid%7,reqtres%35,alloctres%35
  JobID                             ReqTRES                           AllocTRES
------- ----------------------------------- -----------------------------------
  17199     billing=3,cpu=3,mem=300M,node=1     billing=4,cpu=4,mem=400M,node=1

In this second example, because of --threads-per-core=1, each task is allocated an entire core but is only able to use one thread per core. Allocated CPUs includes all threads on each core. However, allocated memory per cpu includes only the usable thread in each core.

$ salloc -n3 --mem-per-cpu=100 --threads-per-core=1
salloc: Granted job allocation 17200
$ sacct -j $SLURM_JOB_ID -X -o jobid%7,reqtres%35,alloctres%35
  JobID                             ReqTRES                           AllocTRES
------- ----------------------------------- -----------------------------------
  17200     billing=3,cpu=3,mem=300M,node=1     billing=6,cpu=6,mem=300M,node=1

--mem-per-gpu=<size>[units]
Minimum memory required per allocated GPU. Default units are megabytes. Different units can be specified using the suffix [K|M|G|T]. Default value is DefMemPerGPU and is available on both a global and per partition basis. If configured, the parameters can be seen using the scontrol show config and scontrol show partition commands. Also see --mem. The --mem, --mem-per-cpu and --mem-per-gpu options are mutually exclusive.

--mincpus=<n>
Specify a minimum number of logical cpus/processors per node.

--network=<type>
Specify information pertaining to the switch or network. The interpretation of type is system dependent. This option is supported when running Slurm on a Cray natively. It is used to request using Network Performance Counters. Only one value per request is valid. All options are case in-sensitive. In this configuration supported values include:
system
Use the system-wide network performance counters. Only nodes requested will be marked in use for the job allocation. If the job does not fill up the entire system the rest of the nodes are not able to be used by other jobs using NPC, if idle their state will appear as PerfCnts. These nodes are still available for other jobs not using NPC.

blade
Use the blade network performance counters. Only nodes requested will be marked in use for the job allocation. If the job does not fill up the entire blade(s) allocated to the job those blade(s) are not able to be used by other jobs using NPC, if idle their state will appear as PerfCnts. These nodes are still available for other jobs not using NPC.

In all cases the job allocation request must specify the --exclusive option. Otherwise the request will be denied.

Also with any of these options steps are not allowed to share blades, so resources would remain idle inside an allocation if the step running on a blade does not take up all the nodes on the blade.

The network option is also available on systems with HPE Slingshot networks. It can be used to request a job VNI (to be used for communication between job steps in a job). It also can be used to override the default network resources allocated for the job step. Multiple values may be specified in a comma-separated list.

tcs=<class1>[:<class2>]...
Set of traffic classes to configure for applications. Supported traffic classes are DEDICATED_ACCESS, LOW_LATENCY, BULK_DATA, and BEST_EFFORT. The traffic classes may also be specified as TC_DEDICATED_ACCESS, TC_LOW_LATENCY, TC_BULK_DATA, and TC_BEST_EFFORT.

no_vni
Don't allocate any VNIs for this job (even if multi-node).

job_vni
Allocate a job VNI for this job.

single_node_vni
Allocate a job VNI for this job, even if it is a single-node job.

adjust_limits
If set, slurmd will set an upper bound on network resource reservations by taking the per-NIC maximum resource quantity and subtracting the reserved or used values (whichever is higher) for any system network services; this is the default.

no_adjust_limits
If set, slurmd will calculate network resource reservations based only upon the per-resource configuration default and number of tasks in the application; it will not set an upper bound on those reservation requests based on resource usage of already-existing system network services. Setting this will mean more application launches could fail based on network resource exhaustion, but if the application absolutely needs a certain amount of resources to function, this option will ensure that.

disable_rdzv_get
Disable rendezvous gets in Slingshot NICs, which can improve performance for certain applications.

def_<rsrc>=<val>
Per-CPU reserved allocation for this resource.

res_<rsrc>=<val>
Per-node reserved allocation for this resource. If set, overrides the per-CPU allocation.

max_<rsrc>=<val>
Maximum per-node limit for this resource.

depth=<depth>
Multiplier for per-CPU resource allocation. Default is the number of reserved CPUs on the node.

The resources that may be requested are:

txqs
Transmit command queues. The default is 2 per-CPU, maximum 1024 per-node.

tgqs
Target command queues. The default is 1 per-CPU, maximum 512 per-node.

eqs
Event queues. The default is 2 per-CPU, maximum 2047 per-node.

cts
Counters. The default is 1 per-CPU, maximum 2047 per-node.

tles
Trigger list entries. The default is 1 per-CPU, maximum 2048 per-node.

ptes
Portable table entries. The default is 6 per-CPU, maximum 2048 per-node.

les
List entries. The default is 16 per-CPU, maximum 16384 per-node.

acs
Addressing contexts. The default is 4 per-CPU, maximum 1022 per-node.

--nice[=adjustment]
Run the job with an adjusted scheduling priority within Slurm. With no adjustment value the scheduling priority is decreased by 100. A negative nice value increases the priority, otherwise decreases it. The adjustment range is +/- 2147483645. Only privileged users can specify a negative adjustment.

--no-bell
Silence salloc's use of the terminal bell. Also see the option --bell.

-k, --no-kill[=off]
Do not automatically terminate a job if one of the nodes it has been allocated fails. The user will assume the responsibilities for fault-tolerance should a node fail. The job allocation will not be revoked so the user may launch new job steps on the remaining nodes in their allocation. This option does not set the SLURM_NO_KILL environment variable. Therefore, when a node fails, steps running on that node will be killed unless the SLURM_NO_KILL environment variable was explicitly set or srun calls within the job allocation explicitly requested --no-kill.

Specify an optional argument of "off" to disable the effect of the SALLOC_NO_KILL environment variable.

By default Slurm terminates the entire job allocation if any node fails in its range of allocated nodes.

--no-shell
immediately exit after allocating resources, without running a command. However, the Slurm job will still be created and will remain active and will own the allocated resources as long as it is active. You will have a Slurm job id with no associated processes or tasks. You can submit srun commands against this resource allocation, if you specify the --jobid= option with the job id of this Slurm job. Or, this can be used to temporarily reserve a set of resources so that other jobs cannot use them for some period of time. (Note that the Slurm job is subject to the normal constraints on jobs, including time limits, so that eventually the job will terminate and the resources will be freed, or you can terminate the job manually using the scancel command.)

-F, --nodefile=<node_file>
Much like --nodelist, but the list is contained in a file of name node file. The node names of the list may also span multiple lines in the file. Duplicate node names in the file will be ignored. The order of the node names in the list is not important; the node names will be sorted by Slurm.

-w, --nodelist=<node_name_list>
Request a specific list of hosts. The job will contain all of these hosts and possibly additional hosts as needed to satisfy resource requirements. The list may be specified as a comma-separated list of hosts, a range of hosts (host[1-5,7,...] for example), or a filename. The host list will be assumed to be a filename if it contains a "/" character. If you specify a minimum node or processor count larger than can be satisfied by the supplied host list, additional resources will be allocated on other nodes as needed. Duplicate node names in the list will be ignored. The order of the node names in the list is not important; the node names will be sorted by Slurm.

-N, --nodes=<minnodes>[-maxnodes]|<size_string>
Request that a minimum of minnodes nodes be allocated to this job. A maximum node count may also be specified with maxnodes. If only one number is specified, this is used as both the minimum and maximum node count. Node count can be also specified as size_string. The size_string specification identifies what nodes values should be used. Multiple values may be specified using a comma separated list or with a step function by suffix containing a colon and number values with a "-" separator. For example, "--nodes=1-15:4" is equivalent to "--nodes=1,5,9,13". The partition's node limits supersede those of the job. If a job's node limits are outside of the range permitted for its associated partition, the job will be left in a PENDING state. This permits possible execution at a later time, when the partition limit is changed. If a job node limit exceeds the number of nodes configured in the partition, the job will be rejected. Note that the environment variable SLURM_JOB_NUM_NODES will be set to the count of nodes actually allocated to the job. See the ENVIRONMENT VARIABLES section for more information. If -N is not specified, the default behavior is to allocate enough nodes to satisfy the requested resources as expressed by per-job specification options, e.g. -n, -c and --gpus. The job will be allocated as many nodes as possible within the range specified and without delaying the initiation of the job. The node count specification may include a numeric value followed by a suffix of "k" (multiplies numeric value by 1,024) or "m" (multiplies numeric value by 1,048,576).

NOTE: This option cannot be used in with arbitrary distribution.

-n, --ntasks=<number>
salloc does not launch tasks, it requests an allocation of resources and executed some command. This option advises the Slurm controller that job steps run within this allocation will launch a maximum of number tasks and sufficient resources are allocated to accomplish this. The default is one task per node, but note that the --cpus-per-task option will change this default.

--ntasks-per-core=<ntasks>
Request the maximum ntasks be invoked on each core. Meant to be used with the --ntasks option. Related to --ntasks-per-node except at the core level instead of the node level. This option will be inhertited by srun. Slurm may allocate more cpus than what was requested in order to respect this option.
NOTE: This option is not supported when using SelectType=select/linear. This value can not be greater than --threads-per-core.

--ntasks-per-gpu=<ntasks>
Request that there are ntasks tasks invoked for every GPU. This option can work in two ways: 1) either specify --ntasks in addition, in which case a type-less GPU specification will be automatically determined to satisfy --ntasks-per-gpu, or 2) specify the GPUs wanted (e.g. via --gpus or --gres) without specifying --ntasks, and the total task count will be automatically determined. The number of CPUs needed will be automatically increased if necessary to allow for any calculated task count. This option will implicitly set --tres-bind=gres/gpu:single:<ntasks>, but that can be overridden with an explicit --tres-bind=gres/gpu specification. This option is not compatible with a node range (i.e. -N<minnodes-maxnodes>). This option is not compatible with --gpus-per-task, --gpus-per-socket, or --ntasks-per-node. This option is not supported unless SelectType=cons_tres is configured (either directly or indirectly on Cray systems).

--ntasks-per-node=<ntasks>
Request that ntasks be invoked on each node. If used with the --ntasks option, the --ntasks option will take precedence and the --ntasks-per-node will be treated as a maximum count of tasks per node. Meant to be used with the --nodes option. This is related to --cpus-per-task=ncpus, but does not require knowledge of the actual number of cpus on each node. In some cases, it is more convenient to be able to request that no more than a specific number of tasks be invoked on each node. Examples of this include submitting a hybrid MPI/OpenMP app where only one MPI "task/rank" should be assigned to each node while allowing the OpenMP portion to utilize all of the parallelism present in the node, or submitting a single setup/cleanup/monitoring job to each node of a pre-existing allocation as one step in a larger job script.

--ntasks-per-socket=<ntasks>
Request the maximum ntasks be invoked on each socket. Meant to be used with the --ntasks option. Related to --ntasks-per-node except at the socket level instead of the node level. NOTE: This option is not supported when using SelectType=select/linear.

-O, --overcommit
Overcommit resources.

When applied to a job allocation (not including jobs requesting exclusive access to the nodes) the resources are allocated as if only one task per node is requested. This means that the requested number of cpus per task (-c, --cpus-per-task) are allocated per node rather than being multiplied by the number of tasks. Options used to specify the number of tasks per node, socket, core, etc. are ignored.

When applied to job step allocations (the srun command when executed within an existing job allocation), this option can be used to launch more than one task per CPU. Normally, srun will not allocate more than one process per CPU. By specifying --overcommit you are explicitly allowing more than one process per CPU. However no more than MAX_TASKS_PER_NODE tasks are permitted to execute per node. NOTE: MAX_TASKS_PER_NODE is defined in the file slurm.h and is not a variable, it is set at Slurm build time.

-s, --oversubscribe
The job allocation can over-subscribe resources with other running jobs. The resources to be over-subscribed can be nodes, sockets, cores, and/or hyperthreads depending upon configuration. The default over-subscribe behavior depends on system configuration and the partition's OverSubscribe option takes precedence over the job's option. This option may result in the allocation being granted sooner than if the --oversubscribe option was not set and allow higher system utilization, but application performance will likely suffer due to competition for resources. Also see the --exclusive option.

NOTE: This option is mutually exclusive with --exclusive.

-p, --partition=<partition_names>
Request a specific partition for the resource allocation. If not specified, the default behavior is to allow the slurm controller to select the default partition as designated by the system administrator. If the job can use more than one partition, specify their names in a comma separate list and the one offering earliest initiation will be used with no regard given to the partition name ordering (although higher priority partitions will be considered first). When the job is initiated, the name of the partition used will be placed first in the job record partition string.

--prefer=<list>
Nodes can have features assigned to them by the Slurm administrator. Users can specify which of these features are desired but not required by their job using the prefer option. This option operates independently from --constraint and will override whatever is set there if possible. When scheduling, the features in --prefer are tried first. If a node set isn't available with those features then --constraint is attempted. See --constraint for more information, this option behaves the same way.

--priority=<value>
Request a specific job priority. May be subject to configuration specific constraints. value should either be a numeric value or "TOP" (for highest possible value). Only Slurm operators and administrators can set the priority of a job.

--profile={all|none|<type>[,<type>...]}
Enables detailed data collection by the acct_gather_profile plugin. Detailed data are typically time-series that are stored in an HDF5 file for the job or an InfluxDB database depending on the configured plugin.
All
All data types are collected. (Cannot be combined with other values.)

None
No data types are collected. This is the default.
 (Cannot be combined with other values.)

Valid type values are:

Energy
Energy data is collected.

Task
Task (I/O, Memory, ...) data is collected.

Lustre
Lustre data is collected.

Network
Network (InfiniBand) data is collected.

-q, --qos=<qos>
Request a quality of service for the job. QOS values can be defined for each user/cluster/account association in the Slurm database. Users will be limited to their association's defined set of qos's when the Slurm configuration parameter, AccountingStorageEnforce, includes "qos" in its definition.

-Q, --quiet
Suppress informational messages from salloc. Errors will still be displayed.

--reboot
Force the allocated nodes to reboot before starting the job. This is only supported with some system configurations and will otherwise be silently ignored. Only root, SlurmUser or admins can reboot nodes.

--reservation=<reservation_names>
Allocate resources for the job from the named reservation. If the job can use more than one reservation, specify their names in a comma separate list and the one offering earliest initiation. Each reservation will be considered in the order it was requested. All reservations will be listed in scontrol/squeue through the life of the job. In accounting the first reservation will be seen and after the job starts the reservation used will replace it.

--resv-ports[=count]
Reserve communication ports for this job. Users can specify the number of port they want to reserve. The parameter MpiParams=ports=12000-12999 must be specified in slurm.conf. If the number of reserved ports is zero then no ports are reserved. Used for native Cray's PMI only. This option can only be used if the slurmstepd step management is enabled. This option applies to job allocations. See --stepmgr.

--segment=<segment_size>
When a block topology is used, this defines the size of the segments that will be used to create the job allocation. No requirement would be placed on all segments for a job needing to be placed within the same higher-level block.

NOTE: The segment size must always be evenly divisible by the requested node count.

NOTE: The segment size must be less than or equal to the planning base block size. E.g., for a system with 30 nodes as the planning base block size, "--segment 40" would be invalid

--signal=[R:]<sig_num>[@sig_time]
When a job is within sig_time seconds of its end time, send it the signal sig_num. Due to the resolution of event handling by Slurm, the signal may be sent up to 60 seconds earlier than specified. sig_num may either be a signal number or name (e.g. "10" or "USR1"). sig_time must have an integer value between 0 and 65535. By default, no signal is sent before the job's end time. If a sig_num is specified without any sig_time, the default time will be 60 seconds. Use the "R:" option to allow this job to overlap with a reservation with MaxStartDelay set. To have the signal sent at preemption time see the send_user_signal PreemptParameter.

--sockets-per-node=<sockets>
Restrict node selection to nodes with at least the specified number of sockets. See additional information under -B option above when task/affinity plugin is enabled.
NOTE: This option may implicitly set the number of tasks (if -n was not specified) as one task per requested thread.

--spread-job
Spread the job allocation over as many nodes as possible and attempt to evenly distribute tasks across the allocated nodes. This option disables the topology/tree plugin.

--stepmgr
Enable slurmstepd step management per-job if it isn't enabled system wide. This enables job steps to be managed by a single extern slurmstepd associated with the job to manage steps. This is beneficial for jobs that submit many steps inside their allocations. PrologFlags=contain must be set.

--switches=<count>[@max-time]
When a tree topology is used, this defines the maximum count of leaf switches desired for the job allocation and optionally the maximum time to wait for that number of switches. If Slurm finds an allocation containing more switches than the count specified, the job remains pending until it either finds an allocation with desired switch count or the time limit expires. It there is no switch count limit, there is no delay in starting the job. Acceptable time formats include "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds". The job's maximum time delay may be limited by the system administrator using the SchedulerParameters configuration parameter with the max_switch_wait parameter option. On a dragonfly network the only switch count supported is 1 since communication performance will be highest when a job is allocate resources on one leaf switch or more than 2 leaf switches. The default max-time is the max_switch_wait SchedulerParameters.

--thread-spec=<num>
Count of specialized threads per node reserved by the job for system operations and not used by the application. The application will not use these threads, but will be charged for their allocation. This option can not be used with the --core-spec option.

NOTE: Explicitly setting a job's specialized thread value implicitly sets its --exclusive option, reserving entire nodes for the job.

--threads-per-core=<threads>
Restrict node selection to nodes with at least the specified number of threads per core. In task layout, use the specified maximum number of threads per core. NOTE: "Threads" refers to the number of processing units on each core rather than the number of application tasks to be launched per core. See additional information under -B option above when task/affinity plugin is enabled.
NOTE: This option may implicitly set the number of tasks (if -n was not specified) as one task per requested thread.

-t, --time=<time>
Set a limit on the total run time of the job allocation. If the requested time limit exceeds the partition's time limit, the job will be left in a PENDING state (possibly indefinitely). The default time limit is the partition's default time limit. When the time limit is reached, each task in each job step is sent SIGTERM followed by SIGKILL. The interval between signals is specified by the Slurm configuration parameter KillWait. The OverTimeLimit configuration parameter may permit the job to run longer than scheduled. Time resolution is one minute and second values are rounded up to the next minute.

A time limit of zero requests that no time limit be imposed. Acceptable time formats include "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

--time-min=<time>
Set a minimum time limit on the job allocation. If specified, the job may have its --time limit lowered to a value no lower than --time-min if doing so permits the job to begin execution earlier than otherwise possible. The job's time limit will not be changed after the job is allocated resources. This is performed by a backfill scheduling algorithm to allocate resources otherwise reserved for higher priority jobs. Acceptable time formats include "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

--tmp=<size>[units]
Specify a minimum amount of temporary disk space per node. Default units are megabytes. Different units can be specified using the suffix [K|M|G|T].

--tres-bind=<tres>:[verbose,]<type>[+<tres>:
[verbose,]<type>...] Specify a list of tres with their task binding options. Currently gres are the only supported tres for this options. Specify gres as "gres/<gres_name>" (e.g. gres/gpu)

Example: --tres-bind=gres/gpu:verbose,map:0,1,2,3+gres/nic:closest

By default, most tres are not bound to individual tasks

Supported binding type options for gres:

closest
Bind each task to the gres(s) which are closest. In a NUMA environment, each task may be bound to more than one gres (i.e. all gres in that NUMA environment).

map:<list>
Bind by setting gres masks on tasks (or ranks) as specified where <list> is <gres_id_for_task_0>,<gres_id_for_task_1>,... gres IDs are interpreted as decimal values. If the number of tasks (or ranks) exceeds the number of elements in this list, elements in the list will be reused as needed starting from the beginning of the list. To simplify support for large task counts, the lists may follow a map with an asterisk and repetition count. For example "map:0*4,1*4". If the task/cgroup plugin is used and ConstrainDevices is set in cgroup.conf, then the gres IDs are zero-based indexes relative to the gress allocated to the job (e.g. the first gres is 0, even if the global ID is 3). Otherwise, the gres IDs are global IDs, and all gres on each node in the job should be allocated for predictable binding results.

mask:<list>
Bind by setting gres masks on tasks (or ranks) as specified where <list> is <gres_mask_for_task_0>,<gres_mask_for_task_1>,... The mapping is specified for a node and identical mapping is applied to the tasks on every node (i.e. the lowest task ID on each node is mapped to the first mask specified in the list, etc.). gres masks are always interpreted as hexadecimal values but can be preceded with an optional '0x'. To simplify support for large task counts, the lists may follow a map with an asterisk and repetition count. For example "mask:0x0f*4,0xf0*4". If the task/cgroup plugin is used and ConstrainDevices is set in cgroup.conf, then the gres IDs are zero-based indexes relative to the gres allocated to the job (e.g. the first gres is 0, even if the global ID is 3). Otherwise, the gres IDs are global IDs, and all gres on each node in the job should be allocated for predictable binding results.

none
Do not bind tasks to this gres (turns off implicit binding from --tres-per-task and --gpus-per-task).

per_task:<gres_per_task>
Each task will be bound to the number of gres specified in <gres_per_task>. Tasks are preferentially assigned gres with affinity to cores in their allocation like in closest, though they will take any gres if they are unavailable. If no affinity exists, the first task will be assigned the first x number of gres on the node etc. Shared gres will prefer to bind one sharing device per task if possible.

single:<tasks_per_gres>
Like closest, except that each task can only be bound to a single gres, even when it can be bound to multiple gres that are equally close. The gres to bind to is determined by <tasks_per_gres>, where the first <tasks_per_gres> tasks are bound to the first gres available, the second <tasks_per_gres> tasks are bound to the second gres available, etc. This is basically a block distribution of tasks onto available gres, where the available gres are determined by the socket affinity of the task and the socket affinity of the gres as specified in gres.conf's Cores parameter.

NOTE: Shared gres binding is currently limited to per_task or none

--tres-per-task=<list>
Specifies a comma-delimited list of trackable resources required for the job on each task to be spawned in the job's resource allocation. The format for each entry in the list is "trestype[/tresname]:count". The trestype is the type of trackable resource requested (e.g. cpu, gres, license, etc). The tresname is the name of the trackable resource, as can be seen with sacctmgr show tres. This is required when it exists for tres types such as gres, license, etc. (e.g. gpu, gpu:a100). In order to request a license with this option, the license(s) must be defined in the AccountingStorageTRES parameter of slurm.conf. The count is the number of those resources.
The count can have a suffix of
"k" or "K" (multiple of 1024),
"m" or "M" (multiple of 1024 x 1024),
"g" or "G" (multiple of 1024 x 1024 x 1024),
"t" or "T" (multiple of 1024 x 1024 x 1024 x 1024),
"p" or "P" (multiple of 1024 x 1024 x 1024 x 1024 x 1024).
Examples:
--tres-per-task=cpu:4
--tres-per-task=cpu:8,license/ansys:1
--tres-per-task=gres/gpu:1
--tres-per-task=gres/gpu:a100:2
The specified resources will be allocated to the job on each node. The available trackable resources are configurable by the system administrator.
NOTE: This option with gres/gpu or gres/shard will implicitly set --tres-bind=per_task:(gpu or shard)<tres_per_task>; this can be overridden with an explicit --tres-bind specification.
NOTE: Invalid TRES for --tres-per-task include bb,billing,energy,fs,mem,node,pages,vmem.

--uid=<user>
Attempt to submit and/or run a job as user instead of the invoking user id. The invoking user's credentials will be used to check access permissions for the target partition. This option is only valid for user root. This option may be used by user root may use this option to run jobs as a normal user in a RootOnly partition for example. If run as root, salloc will drop its permissions to the uid specified after node allocation is successful. user may be the user name or numerical user ID.

--usage
Display brief help message and exit.

--use-min-nodes
If a range of node counts is given, prefer the smaller count.

-v, --verbose
Increase the verbosity of salloc's informational messages. Multiple -v's will further increase salloc's verbosity. By default only errors will be displayed.

-V, --version
Display version information and exit.

--wait-all-nodes=<value>
Controls when the execution of the command begins with respect to when nodes are ready for use (i.e. booted). By default, the salloc command will return as soon as the allocation is made. This default can be altered using the salloc_wait_nodes option to the SchedulerParameters parameter in the slurm.conf file.
0
Begin execution as soon as allocation can be made. Do not wait for all nodes to be ready for use (i.e. booted).

1
Do not begin execution until all nodes are ready for use.

--wckey=<wckey>
Specify wckey to be used with job. If TrackWCKey=no (default) in the slurm.conf this value is ignored.

--x11[={all|first|last}]
Sets up X11 forwarding on "all", "first" or "last" node(s) of the allocation. This option is only enabled if Slurm was compiled with X11 support and PrologFlags=x11 is defined in the slurm.conf. Default is "all".

 

PERFORMANCE

Executing salloc sends a remote procedure call to slurmctld. If enough calls from salloc or other Slurm client commands that send remote procedure calls to the slurmctld daemon come in at once, it can result in a degradation of performance of the slurmctld daemon, possibly resulting in a denial of service.

Do not run salloc or other Slurm client commands that send remote procedure calls to slurmctld from loops in shell scripts or other programs. Ensure that programs limit calls to salloc to the minimum necessary for the information you are trying to gather.

 

INPUT ENVIRONMENT VARIABLES

Upon startup, salloc will read and handle the options set in the following environment variables. The majority of these variables are set the same way the options are set, as defined above. For flag options that are defined to expect no argument, the option can be enabled by setting the environment variable without a value (empty or NULL string), the string 'yes', or a non-zero number. Any other value for the environment variable will result in the option not being set. There are a couple exceptions to these rules that are noted below.
NOTE: Command line options always override environment variables settings.

SALLOC_ACCOUNT
Same as -A, --account

SALLOC_ACCTG_FREQ
Same as --acctg-freq

SALLOC_BELL
Same as --bell

SALLOC_BURST_BUFFER
Same as --bb

SALLOC_CLUSTERS or SLURM_CLUSTERS
Same as --clusters

SALLOC_CONSTRAINT
Same as -C, --constraint

SALLOC_CONTAINER
Same as --container.

SALLOC_CONTAINER_ID
Same as --container-id.

SALLOC_CORE_SPEC
Same as --core-spec

SALLOC_CPUS_PER_GPU
Same as --cpus-per-gpu

SALLOC_DEBUG
Same as -v, --verbose, when set to 1, when set to 2 gives -vv, etc.

SALLOC_DELAY_BOOT
Same as --delay-boot

SALLOC_EXCLUSIVE
Same as --exclusive

SALLOC_GPU_BIND
Same as --gpu-bind

SALLOC_GPU_FREQ
Same as --gpu-freq

SALLOC_GPUS
Same as -G, --gpus

SALLOC_GPUS_PER_NODE
Same as --gpus-per-node

SALLOC_GPUS_PER_TASK
Same as --gpus-per-task

SALLOC_GRES
Same as --gres

SALLOC_GRES_FLAGS
Same as --gres-flags

SALLOC_HINT or SLURM_HINT
Same as --hint

SALLOC_IMMEDIATE
Same as -I, --immediate

SALLOC_KILL_CMD
Same as -K, --kill-command

SALLOC_MEM_BIND
Same as --mem-bind

SALLOC_MEM_PER_CPU
Same as --mem-per-cpu

SALLOC_MEM_PER_GPU
Same as --mem-per-gpu

SALLOC_MEM_PER_NODE
Same as --mem

SALLOC_NETWORK
Same as --network

SALLOC_NO_BELL
Same as --no-bell

SALLOC_NO_KILL
Same as -k, --no-kill

SALLOC_OVERCOMMIT
Same as -O, --overcommit

SALLOC_PARTITION
Same as -p, --partition

SALLOC_POWER
Same as --power

SALLOC_PROFILE
Same as --profile

SALLOC_QOS
Same as --qos

SALLOC_REQ_SWITCH
When a tree topology is used, this defines the maximum count of switches desired for the job allocation and optionally the maximum time to wait for that number of switches. See --switches.

SALLOC_RESERVATION
Same as --reservation

SALLOC_SIGNAL
Same as --signal

SALLOC_SPREAD_JOB
Same as --spread-job

SALLOC_THREAD_SPEC
Same as --thread-spec

SALLOC_THREADS_PER_CORE
Same as --threads-per-core

SALLOC_TIMELIMIT
Same as -t, --time

SALLOC_TRES_BIND
Same as --tres-bind

SALLOC_TRES_PER_TASK
Same as --tres-per-task

SALLOC_USE_MIN_NODES
Same as --use-min-nodes

SALLOC_WAIT_ALL_NODES
Same as --wait-all-nodes. Must be set to 0 or 1 to disable or enable the option.

SALLOC_WAIT4SWITCH
Max time waiting for requested switches. See --switches

SALLOC_WCKEY
Same as --wckey

SLURM_CONF
The location of the Slurm configuration file.

SLURM_DEBUG_FLAGS
Specify debug flags for salloc to use. See DebugFlags in the slurm.conf(5) man page for a full list of flags. The environment variable takes precedence over the setting in the slurm.conf.

SLURM_EXIT_ERROR
Specifies the exit code generated when a Slurm error occurs (e.g. invalid options). This can be used by a script to distinguish application exit codes from various Slurm error conditions. Also see SLURM_EXIT_IMMEDIATE.

SLURM_EXIT_IMMEDIATE
Specifies the exit code generated when the --immediate option is used and resources are not currently available. This can be used by a script to distinguish application exit codes from various Slurm error conditions. Also see SLURM_EXIT_ERROR.

 

OUTPUT ENVIRONMENT VARIABLES

salloc will set the following environment variables in the environment of the executed program:

SLURM_*_HET_GROUP_#
For a heterogeneous job allocation, the environment variables are set separately for each component.

SLURM_CLUSTER_NAME
Name of the cluster on which the job is executing.

SLURM_CONTAINER
OCI Bundle for job. Only set if --container is specified.

SLURM_CONTAINER_ID
OCI id for job. Only set if --container-id is specified.

SLURM_CPUS_PER_GPU
Number of CPUs requested per allocated GPU. Only set if the --cpus-per-gpu option is specified.

SLURM_CPUS_PER_TASK
Number of CPUs requested per task. Only set if either the --cpus-per-task option or the --tres-per-task=cpu:# option is specified.

SLURM_DIST_PLANESIZE
Plane distribution size. Only set for plane distributions. See -m, --distribution.

SLURM_DISTRIBUTION
Only set if the -m, --distribution option is specified.

SLURM_GPU_BIND
Requested binding of tasks to GPU. Only set if the --gpu-bind option is specified.

SLURM_GPU_FREQ
Requested GPU frequency. Only set if the --gpu-freq option is specified.

SLURM_GPUS
Number of GPUs requested. Only set if the -G, --gpus option is specified.

SLURM_GPUS_PER_NODE
Requested GPU count per allocated node. Only set if the --gpus-per-node option is specified.

SLURM_GPUS_PER_SOCKET
Requested GPU count per allocated socket. Only set if the --gpus-per-socket option is specified.

SLURM_GPUS_PER_TASK
Requested GPU count per allocated task. Only set if the --gpus-per-task option is specified.

SLURM_HET_SIZE
Set to count of components in heterogeneous job.

SLURM_JOB_ACCOUNT
Account name associated of the job allocation.

SLURM_JOB_CPUS_PER_NODE
Count of CPUs available to the job on the nodes in the allocation, using the format CPU_count[(xnumber_of_nodes)][,CPU_count [(xnumber_of_nodes)] ...]. For example: SLURM_JOB_CPUS_PER_NODE='72(x2),36' indicates that on the first and second nodes (as listed by SLURM_JOB_NODELIST) the allocation has 72 CPUs, while the third node has 36 CPUs. NOTE: The select/linear plugin allocates entire nodes to jobs, so the value indicates the total count of CPUs on allocated nodes. The select/cons_tres plugin allocates individual CPUs to jobs, so this number indicates the number of CPUs allocated to the job.

SLURM_JOB_END_TIME
The UNIX timestamp for a job's projected end time.

SLURM_JOB_GPUS
The global GPU IDs of the GPUs allocated to this job. The GPU IDs are not relative to any device cgroup, even if devices are constrained with task/cgroup. Only set in batch and interactive jobs.

SLURM_JOB_ID
The ID of the job allocation.

SLURM_JOB_NODELIST
List of nodes allocated to the job.

SLURM_JOB_NUM_NODES
Total number of nodes in the job allocation.

SLURM_JOB_PARTITION
Name of the partition in which the job is running.

SLURM_JOB_QOS
Quality Of Service (QOS) of the job allocation.

SLURM_JOB_RESERVATION
Advanced reservation containing the job allocation, if any.

SLURM_JOB_START_TIME
UNIX timestamp for a job's start time.

SLURM_JOBID
The ID of the job allocation. See SLURM_JOB_ID. Included for backwards compatibility.

SLURM_MEM_BIND
Set to value of the --mem-bind option.

SLURM_MEM_BIND_LIST
Set to bit mask used for memory binding.

SLURM_MEM_BIND_PREFER
Set to "prefer" if the --mem-bind option includes the prefer option.

SLURM_MEM_BIND_SORT
Sort free cache pages (run zonesort on Intel KNL nodes)

SLURM_MEM_BIND_TYPE
Set to the memory binding type specified with the --mem-bind option. Possible values are "none", "rank", "map_map", "mask_mem" and "local".

SLURM_MEM_BIND_VERBOSE
Set to "verbose" if the --mem-bind option includes the verbose option. Set to "quiet" otherwise.

SLURM_MEM_PER_CPU
Same as --mem-per-cpu

SLURM_MEM_PER_GPU
Requested memory per allocated GPU. Only set if the --mem-per-gpu option is specified.

SLURM_MEM_PER_NODE
Same as --mem

SLURM_NNODES
Total number of nodes in the job allocation. See SLURM_JOB_NUM_NODES. Included for backwards compatibility.

SLURM_NODELIST
List of nodes allocated to the job. See SLURM_JOB_NODELIST. Included for backwards compatibility.

SLURM_NPROCS
Set to value of the --ntasks option, if specified. Or, if either of the --ntasks-per-node or --ntasks-per-gpu options are specified, set to the number of tasks in the job. See SLURM_NTASKS. Included for backwards compatibility.

SLURM_NTASKS
Set to value of the --ntasks option, if specified. Or, if either of the --ntasks-per-node or --ntasks-per-gpu options are specified, set to the number of tasks in the job.

SLURM_NTASKS_PER_CORE
Set to value of the --ntasks-per-core option, if specified.

SLURM_NTASKS_PER_GPU
Set to value of the --ntasks-per-gpu option, if specified.

SLURM_NTASKS_PER_NODE
Set to value of the --ntasks-per-node option, if specified.

SLURM_NTASKS_PER_SOCKET
Set to value of the --ntasks-per-socket option, if specified.

SLURM_OVERCOMMIT
Set to 1 if --overcommit was specified.

SLURM_PROFILE
Same as --profile

SLURM_SHARDS_ON_NODE
Number of GPU Shards available to the step on this node.

SLURM_SUBMIT_DIR
The directory from which salloc was invoked or, if applicable, the directory specified by the -D, --chdir option.

SLURM_SUBMIT_HOST
The hostname of the computer from which salloc was invoked.

SLURM_TASKS_PER_NODE
Number of tasks to be initiated on each node. Values are comma separated and in the same order as SLURM_JOB_NODELIST. If two or more consecutive nodes are to have the same task count, that count is followed by "(x#)" where "#" is the repetition count. For example, "SLURM_TASKS_PER_NODE=2(x3),1" indicates that the first three nodes will each execute two tasks and the fourth node will execute one task.

SLURM_THREADS_PER_CORE
This is only set if --threads-per-core or SALLOC_THREADS_PER_CORE were specified. The value will be set to the value specified by --threads-per-core or SALLOC_THREADS_PER_CORE. This is used by subsequent srun calls within the job allocation.

SLURM_TRES_PER_TASK
Set to the value of --tres-per-task. If --cpus-per-task is specified, it is also set in SLURM_TRES_PER_TASK as if it were specified in --tres-per-task.

 

SIGNALS

While salloc is waiting for a PENDING job allocation, most signals will cause salloc to revoke the allocation request and exit.

However if the allocation has been granted and salloc has already started the specified command, then salloc will ignore most signals. salloc will not exit or release the allocation until the command exits. One notable exception is SIGHUP. A SIGHUP signal will cause salloc to release the allocation and exit without waiting for the command to finish. Another exception is SIGTERM, which will be forwarded to the spawned process.

 

EXAMPLES

To get an allocation, and open a new xterm in which srun commands may be typed interactively:

$ salloc -N16 xterm
salloc: Granted job allocation 65537
# (at this point the xterm appears, and salloc waits for xterm to exit)
salloc: Relinquishing job allocation 65537

To grab an allocation of nodes and launch a parallel application on one command line:

$ salloc -N5 srun -n10 myprogram

To create a heterogeneous job with 3 components, each allocating a unique set of nodes:
$ salloc -w node[2-3] : -w node4 : -w node[5-7] bash
salloc: job 32294 queued and waiting for resources
salloc: job 32294 has been allocated resources
salloc: Granted job allocation 32294

 

COPYING

Copyright (C) 2006-2007 The Regents of the University of California. Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
Copyright (C) 2008-2010 Lawrence Livermore National Security.
Copyright (C) 2010-2022 SchedMD LLC.

This file is part of Slurm, a resource management program. For details, see <https://slurm.schedmd.com/>.

Slurm is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Slurm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

 

SEE ALSO

sinfo(1), sattach(1), sbatch(1), squeue(1), scancel(1), scontrol(1), slurm.conf(5), sched_setaffinity (2), numa (3)


 

Index

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
COMMAND PATH RESOLUTION
OPTIONS
PERFORMANCE
INPUT ENVIRONMENT VARIABLES
OUTPUT ENVIRONMENT VARIABLES
SIGNALS
EXAMPLES
COPYING
SEE ALSO

This document was created by man2html using the manual pages.
Time: 21:33:39 GMT, June 07, 2024